forked from alickzhu/Questum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_Werewolf.py
717 lines (626 loc) · 36 KB
/
main_Werewolf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
import argparse
import json
import os
import glob
from utils.Chat_utils import ChatSession
from utils.RAG import VectorDatabase
from utils.llama import load_llama_model
from utils.gemma import load_gemma_model
from utils.json_tools import json_format
import yaml
import pandas as pd
import numpy as np
import math
from tqdm import tqdm
from datetime import datetime
import pickle
class ChatItem:
_index_counter = 0
def __init__(self, stage='', speaker='', listener='', private=False, words='', prompt='', is_ask=1):
self.index = ChatItem._index_counter
ChatItem._index_counter += 1
self.stage = stage # the stage of the chat
self.speaker = speaker # the speaker of the chat
self.listener = listener # the listener of the chat
self.private = private # whether the chat is private
self.words = words # the content of the chat
self.is_ask = is_ask # the prompt of the chat
self.prompt = prompt # the prompt of the chat
class EvaluateItem:
_index_counter = 0
def __init__(self, tester='', question='', answer='', choices='', is_right='', truth='', value=''):
self.index = ChatItem._index_counter
ChatItem._index_counter += 1
self.tester = tester # the tester of the question
self.question = question
self.choices = choices
self.truth = truth
self.answer = answer
self.is_right = is_right
self.value = value
class Agent:
def __init__(self, args, name = '', script='', acts_goal='', final_goal='', secrets='', acts_performance="", is_murderer=False, question=[], model=None, tokenizer=None):
self.session = ChatSession(args=args, model=model, tokenizer=tokenizer) # get reply
self.name = name
self.script = script # current script
self.acts_goal = acts_goal
self.final_goal = final_goal
self.questions = question
self.acts_performance = acts_performance
self.secrets = secrets
self.is_murderer = is_murderer # murderer or civilian
self.database = VectorDatabase()
self.summary = ''
self.character_suspect = []
def speak(self, prompt, evaluate = False):
reply = self.session.get_reply(prompt, evaluate)
return reply
class ScriptManager:
def __init__(self, args):
# {character:script(include goal, script, performance...)}
self.agents_scripts = {}
# {character:evaluate questions}
# self.agents_evaluate = {}
self.agents_final_result = {}
# script parameters
para_file_path = os.path.join(args.script_root, args.script_name, 'json', 'script_info.json')
para = self.read_json(para_file_path)
self.agent_num = para["agent_num"] # script character number
self.character_name_list = para["character_name"] # script character name
self.name2index = {name:str(i) for i, name in enumerate(self.character_name_list)}
self.index2name = {str(i):name for i, name in enumerate(self.character_name_list)}
self.script_name = para["script_name"] # script name
self.open_discuss_rounds = para["open_discuss_rounds"] # open talk rounds
self.acts_num = para["acts_num"] # acts number
self.keep_asking = para["keep_asking"] # continue asking number
self.privacy_discuss_rounds = para["privacy_discuss_rounds"] # privacy talk rounds
# read each character's script
for name in self.character_name_list:
script_file_path = os.path.join(args.script_root, args.script_name, 'json', name + '.json')
script_data = self.read_json(script_file_path)
self.agents_scripts[name] = script_data
for name in self.character_name_list:
final_result_file_path = os.path.join(args.script_root, args.script_name, 'final_result', name + '.csv')
final_result = pd.read_csv(final_result_file_path, encoding='utf-8-sig')
self.agents_final_result[name] = final_result
self.agents_final_result['GM'] = pd.read_csv(os.path.join(args.script_root, args.script_name, 'final_result', 'FSA.csv'), encoding='utf-8-sig')
def update_script(self, agent, n):
"""
update agent's script according to the acts number
"""
if n > self.agent_num - 1:
print('error')
return
name = agent.name
agent.is_murderer = True if self.agents_scripts[name]["is_murderer"] == 1 else False
agent.character_name_list = [i for i in self.character_name_list if i != name]
agent.script = '\n'.join(self.agents_scripts[name]["script"][:n + 1])
agent.acts_goal = '\n'.join(self.agents_scripts[name]["acts_goal"][:n + 1])
# agent.acts_performance = self.agents_scripts[name]["acts_performance"][n]
# agent.secrets = self.agents_scripts[name]["secrets"]
agent.victims = self.agents_scripts[name]["victims"]
agent.kill_by_me = self.agents_scripts[name]["kill_by_me"]
# agent.questions = self.agents_scripts[name]["questions"][n]
if n == self.agent_num - 1:
agent.final_goal = self.agents_scripts[name]["final_goal"]
if agent.character_suspect == []:
agent.character_suspect = [[i for i in self.character_name_list if i != name]]*len(agent.victims)
return agent
def read_json(self, path):
with open(path, 'r', encoding='utf-8') as file:
data = json.load(file)
return data
def get_script(self, agent_name):
return self.agents_scripts.get(agent_name, {})
class Game:
def __init__(self, scriptmanager, args):
# read prompts
self.args = args
with open(args.prompt_path, 'r', encoding='utf-8') as f:
self.prompts = yaml.load(f, Loader=yaml.FullLoader)
f.close()
with open(args.sensor_path, 'r', encoding='utf-8') as f:
self.sensors = json.load(f)
f.close()
# the number of characters who can ask questions when other characters introduce themselves
self.intro_question_num = 2
self.script_manager = scriptmanager
self.agents = [] # store all the agents
self.GM_agent = Agent(args=self.args) # store all the script
self.current_stage = None # current stage
self.chat_history = [] # store all the chat history
self.chat_dataset = VectorDatabase()
self.evaluate_history = []
self.rsl = args.rsl # the max length for relative script length (retrival from current script by RAG)
self.each_rsl = args.each_rsl # the max length for relative script length (retrival from current script by RAG)
self.rchl = args.rchl # the max length for relative chat history length (retrival from chat history by RAG)
self.question_number = args.question_number
if "llama" in args.model_type:
self.model, self.tokenizer = load_llama_model(args.ckpt_dir)
elif "gemma" in args.model_type:
self.model, self.tokenizer = load_gemma_model(args.ckpt_dir)
self.initial_game() # initial game
def initial_game(self):
"""
initial game
"""
character_name_list = self.script_manager.character_name_list
# initial agents
for character_name in character_name_list:
if "llama" in self.args.model_type or "gemma" in self.args.model_type:
self.agents.append(Agent(args=self.args, name=character_name, model=self.model, tokenizer=self.tokenizer))
else:
self.agents.append(Agent(args=self.args, name=character_name))
self.update_script(0) # initial agent script(get act 0 script)
self.initial_agent_session() # initial agent system prompt
def add_chat(self, chatitem):
"""
add chat item to chat history and chat dataset (for RAG)
"""
self.chat_history.append(chatitem) # add chat item to chat history
format_chat_item = self.format_chat_item(chatitem) # get chat string for RAG
# self.chat_dataset.add_text(format_chat_item, False) # store chat string to chat dataset
print(format_chat_item)
def add_chat_database(self, last_n):
chat = ''
for i in range(last_n, 0, -1):
chat += self.format_chat_item(self.chat_history[-i]) + '\n' # get chat string for RAG
self.chat_dataset.add_text(chat, False) # store chat string to chat dataset
def format_chat_item(self, chatitem):
"""
convert chat item to a string that can be used by RAG
"""
if chatitem.is_ask == 1:
format_chat_item = self.prompts['combine_chat_ask'].format(speaker=chatitem.speaker,listener=chatitem.listener, words=chatitem.words)
elif chatitem.is_ask == 2:
format_chat_item = self.prompts['combine_chat_all'].format(speaker=chatitem.speaker,listener=chatitem.listener, words=chatitem.words)
else:
format_chat_item = self.prompts['combine_chat_answer'].format(speaker=chatitem.speaker,listener=chatitem.listener, words=chatitem.words)
return format_chat_item
def get_chat_history(self, name):
"""
This function has been deprecated.
"""
chat_history_list = []
for chatitem in self.chat_history:
if chatitem.private == True and chatitem.listener == name:
chat_history_list.append(self.format_chat_item(chatitem))
if chatitem.private == False:
chat_history_list.append(self.format_chat_item(chatitem))
return ', '.join(chat_history_list)
def update_script(self, n):
"""
update agent's script according to the acts number
add the updated script to the script dataset
"""
all_scrpt = ''
for i in range(len(self.agents)):
self.agents[i] = self.script_manager.update_script(self.agents[i], n)
all_scrpt += self.agents[i].script
file_dir = os.path.join(args.database_root, args.script_name.split("-")[0])
file_name_faiss = os.path.join(args.database_root, args.script_name.split("-")[0], ''.join([self.script_manager.name2index[self.agents[i].name],'_act_',str(n),'.faiss']))
file_name_doc = os.path.join(args.database_root, args.script_name.split("-")[0], ''.join([self.script_manager.name2index[self.agents[i].name],'_act_',str(n),'.pickle']))
if os.path.exists(file_name_faiss):
self.agents[i].database.load_faiss(file_name_faiss)
self.agents[i].database.load_texts(file_name_doc)
else:
self.agents[i].database.reset()
self.agents[i].database.add_text(self.agents[i].script)
if not os.path.exists(file_dir):
os.makedirs(file_dir)
self.agents[i].database.save_faiss(file_name_faiss)
self.agents[i].database.save_texts(file_name_doc)
def initial_agent_session(self):
"""initial agent system prompt according to the role (civilian or murderer)"""
self.GM_agent.session.system = self.prompts['system_prompt_gm']
for i in range(len(self.agents)):
if self.agents[i].is_murderer:
self.agents[i].session.system = self.prompts['system_prompt_murderer'].format(
character_name=self.agents[i].name,
character_name_list=', '.join(self.agents[i].character_name_list))
else:
self.agents[i].session.system = self.prompts['system_prompt_civilian'].format(
character_name=self.agents[i].name,
character_name_list=', '.join(self.agents[i].character_name_list))
def get_agent(self,name):
""" get agent by character name"""
return [i for i in self.agents if i.name == name][0]
def self_introduction_phase(self):
stage = 'self introduction stage'
for i in tqdm(range(len(self.agents))):
# Add host dialogue
# self.add_chat(ChatItem(stage, "hold", self.agents[i].name, False,self.prompts['hold_intro_yourself'].format(character=self.agents[i].name)))
if not args.is_english:
current_script = self.agents[i].database.query('你是谁?', 12000)
else:
current_script = self.agents[i].database.query('who are you?', 12000)
if self.agents[i].is_murderer:
intro_prompt = self.prompts['self_intro_intro'].format(current_script=current_script, goal=self.agents[i].acts_goal)
else:
intro_prompt = self.prompts['self_intro_intro_murder'].format(current_script=current_script, goal=self.agents[i].acts_goal)
intro = self.agents[i].speak(intro_prompt)
# intro_pro = self.process_reply(intro)
self.add_chat(ChatItem(stage, self.agents[i].name, "all", False, intro,intro_prompt, is_ask=2))
self.add_chat_database(1)
def open_talk(self):
for i in tqdm(range(len(self.agents))):
for x,victim in enumerate(self.agents[i].victims):
# get question
for j in tqdm(range(len(self.agents)), desc='Character {0} investigate {1}'.format(self.agents[i].name, victim)):
stage = '{0} ask {1} for death of {2}'.format(self.agents[i].name, self.agents[j].name, victim)
if i == j:
continue
if self.agents[j].name not in self.agents[i].character_suspect[x]:
continue
# question_, question_prompt = self.propose_question_talk_stage(i)
current_script = self.agents[i].database.query(self.agents[j].name+','+victim, self.rsl)
chat_history = self.chat_dataset.query_num(self.agents[j].name+','+victim, 5)
if args.is_english:
prompt = self.prompts['Prompting_LLMs_to_select_questions'].replace('{current_script}',current_script).replace('{victim}',victim).replace('{chat_history}',chat_history).replace('{questions_prepared_for_specific_role}',str(defined_questions["English"]))
else:
prompt = self.prompts['Prompting_LLMs_to_select_questions'].replace('{current_script}',current_script).replace('{victim}',victim).replace('{chat_history}',chat_history).replace('{questions_prepared_for_specific_role}',str(defined_questions["Chinese"]))
questions = self.agents[i].speak(prompt)
questions = questions.split('#')
prompt2 = self.prompts['Prompting_LLMs_to_ask_questions'].replace('{current_script}',current_script).replace('{victim}',victim).replace('{chat_history}',chat_history).replace('{selected_questions}',str(questions))
question = self.agents[i].speak(prompt2)
question = self.process_reply(question)
self.add_chat(ChatItem(stage, self.agents[i].name, self.agents[j].name, False, question, prompt2, is_ask=1))
# get relay agent
relay_agent = self.agents[j]
chat_history = self.chat_dataset.query_num(question, 5)
if relay_agent.kill_by_me[x] == 1:
reply_prompt = self.prompts['open_talk_reply_murder'].format(current_script=self.agents[j].summary,goal=relay_agent.acts_goal,chat_history=chat_history,character=self.agents[i].name,question=question, victim=victim)
reply = relay_agent.speak(reply_prompt)
# reply:
else:
reply_prompt = self.prompts['Prompting_LLMs_to_generate_answers'].format(current_script=current_script,question=question,chat_history=chat_history,character =self.agents[i].name)
# reply_prompt = self.prompts['open_talk_reply_rap'].format(current_script=current_script,goal=relay_agent.acts_goal,chat_history=chat_history,character=self.agents[i].name,question=question)
reply = relay_agent.speak(reply_prompt)
try:
prompt = self.prompts['Prompting_LLMs_to_make_reflection'].replace('{chat_history}',chat_history)
reflection = self.agents[i].speak(prompt)
prompt = self.prompts['Prompting_LLMs_to_generate_the_final_response_'].replace('{reflection}',reflection).replace('{answer}',reply).replace('{character}',self.agents[i].name).replace('{question}',question)
reply = relay_agent.speak(prompt)
reply = json_format(reply)
reply = reply['my_final_answer']
except:
pass
self.add_chat(ChatItem(stage, relay_agent.name, self.agents[i].name, False, reply, reply_prompt, is_ask=0))
self.add_chat_database(2)
def process_reply(self, reply):
# Split the string based on the first occurrence of ":" or ":"
parts = reply.split(':')[-1] if ':' in reply else reply
parts = parts.split(':')[-1] if ':' in parts else parts
# Remove text within the last set of parentheses
if '(' in parts and ')' in parts:
start = parts.rfind('(')
end = parts.rfind(')')
parts = parts[:start] + parts[end+1:]
elif '(' in parts and ')' in parts:
start = parts.rfind('(')
end = parts.rfind(')')
parts = parts[:start] + parts[end+1:]
return parts
def save_history(self,path,prefix = ''):
history_list = []
for chatitem in self.chat_history:
history_list.append({
"index" : chatitem.index,
"stage" : chatitem.stage,
"speaker" : chatitem.speaker,
"listener" : chatitem.listener,
# "private" : chatitem.private,
"words" : chatitem.words,
"prompt" : chatitem.prompt
})
history = pd.DataFrame(history_list)
path_excel = os.path.join(path,prefix+self.script_manager.script_name+'.xlsx')
history.to_excel(path_excel, index=False, encoding='utf-8-sig')
print('save chat history to excel')
file_name_faiss = os.path.join(path, prefix+self.script_manager.script_name+'chat_history.faiss')
file_name_doc = os.path.join(path, prefix+self.script_manager.script_name+'chat_history.pickle')
self.chat_dataset.save_faiss(file_name_faiss)
self.chat_dataset.save_texts(file_name_doc)
def load_history(self, path):
"""
load chat history from excel
"""
file_name_faiss = os.path.join(path, self.script_manager.script_name+'chat_history.faiss')
file_name_doc = os.path.join(path, self.script_manager.script_name+'chat_history.pickle')
if os.path.exists(file_name_faiss):
self.GM_agent.database.load_faiss(file_name_faiss)
self.GM_agent.database.load_texts(file_name_doc)
def save_evaluate_history(self,path,prefix = ''):
path = os.path.join(path, 'evaluate')
if not os.path.exists(path):
os.makedirs(path)
history_list = []
for chatitem in self.evaluate_history:
if chatitem.value == "a":
chatitem.value = 10
elif chatitem.value == "b":
chatitem.value = 5
elif chatitem.value == "c":
chatitem.value = 2
history_list.append({
"tester" : chatitem.tester,
"value" : chatitem.value,
"question" : chatitem.question,
"choices" : chatitem.choices.replace('\n',' '),
"truth" : chatitem.truth,
"answer" : chatitem.answer,
"is_right" : chatitem.is_right
})
history = pd.DataFrame(history_list)
type_a = history[history['value'] == 10]['is_right'].mean()
type_b = history[history['value'] == 5]['is_right'].mean()
type_c = history[history['value'] == 2]['is_right'].mean()
accuracy = history['is_right'].mean()
correct_score = history[history['is_right']==1]['value'].sum()
total_score = history['value'].sum()
score = correct_score / total_score
new_row = pd.DataFrame({'is_right': [score],
"answer":str(correct_score) + '/' + str(total_score),
"question":type_a,
"choices":type_b,
"truth":type_c,
})
# 将新行追加到DataFrame的末尾
history = pd.concat([history, new_row], ignore_index=True)
if prefix == 'GM_':
appendix = '_eva_{}.xlsx'.format(self.each_rsl)
else:
appendix = '_script_{}_chat_{}.xlsx'.format(self.args.rsl,self.args.rchl)
path_excel = os.path.join(path,prefix+self.script_manager.script_name+appendix)
history.to_excel(path_excel, index=False, encoding='utf-8-sig')
print(path_excel)
return path
def evaluate(self):
"""
evaluate the answer of the question
TODA
"""
self.evaluate_history = []
for j in tqdm(range(len(self.agents))):
data = self.script_manager.agents_final_result[self.agents[j].name]
for i in tqdm(range(len(data))):
# for i in range(len(data)):
question = data['question'][i]
if pd.isna(data['c'][i]):
choices = '\nA: '+ data['a'][i] + '\n' + 'B: '+ data['b'][i] + '\n'
elif pd.isna(data['d'][i]):
choices = '\nA: '+ data['a'][i] + '\n' + 'B: '+ data['b'][i] + '\n' + 'C: '+ data['c'][i] + '\n'
elif pd.isna(data['e'][i]):
choices = '\nA: '+ data['a'][i] + '\n' + 'B: '+ data['b'][i] + '\n' + 'C: '+ data['c'][i] + '\n' + 'D: '+ data['d'][i] + '\n'
else:
choices = '\nA: '+ data['a'][i] + '\n' + 'B: '+ data['b'][i] + '\n' + 'C: '+ data['c'][i] + '\n' + 'D: '+ data['d'][i] + '\n' + 'E: '+ data['e'][i] + '\n'
truth = data['truth'][i]
current_script = self.agents[j].database.query(question, self.rsl)
chat_history = self.chat_dataset.query(question, self.rchl)
if data['type'][i] == 'a':
question_prompt = self.prompts['evaluate_ask_rap'].replace('{current_script}',current_script).replace('{chat_history}',chat_history).replace('{question}',question).replace('{choices}',choices)
else:
question_prompt = self.prompts['evaluate_ask_rap_multi'].replace('{current_script}',current_script).replace('{chat_history}',chat_history).replace('{question}',question).replace('{choices}',choices)
answer = self.agents[j].speak(question_prompt,True)
is_right = 0
format_answer = json_format(answer)
try:
if data['type'][i] == 'b':
format_answer = format_answer['answer'].lower()
if truth.lower() in format_answer:
is_right = 1
else:
format_answer = format_answer['answer'].lower()
if format_answer in truth.lower():
is_right = 1
except:
pass
self.evaluate_history.append(EvaluateItem(tester=self.agents[j].name, question = question, choices=choices, answer=answer,truth = truth, is_right=is_right, value=data['value'][i]))
def evaluate_gm(self, version=0):
self.evaluate_history = []
data = self.script_manager.agents_final_result['GM']
for i in tqdm(range(len(data))):
# for i in range(len(data)):
question = data['question'][i]
if pd.isna(data['c'][i]):
choices = '\nA: '+ data['a'][i] + '\n' + 'B: '+ data['b'][i] + '\n'
elif pd.isna(data['d'][i]):
choices = '\nA: '+ data['a'][i] + '\n' + 'B: '+ data['b'][i] + '\n' + 'C: '+ data['c'][i] + '\n'
elif pd.isna(data['e'][i]):
choices = '\nA: '+ data['a'][i] + '\n' + 'B: '+ data['b'][i] + '\n' + 'C: '+ data['c'][i] + '\n' + 'D: '+ data['d'][i] + '\n'
else:
choices = '\nA: '+ data['a'][i] + '\n' + 'B: '+ data['b'][i] + '\n' + 'C: '+ data['c'][i] + '\n' + 'D: '+ data['d'][i] + '\n' + 'E: '+ data['e'][i] + '\n'
truth = data['truth'][i]
# current_script = self.GM_agent.database.query(question, self.rsl)
if version == 0:
self.version = 'average'
relative_script = ''
for j in range(len(self.agents)):
name = self.agents[j].name
current_script = self.agents[j].database.query(question, self.each_rsl)
relative_script +="The information in {}'s script related to this question is: \n {} \n\n".format(name, current_script)
if data['type'][i] == 'a':
question_prompt = self.prompts['evaluate_ask_rap_gm'].replace('{current_script}',relative_script).replace('{question}',question).replace('{choices}',choices)
else:
question_prompt = self.prompts['evaluate_ask_rap_multi_gm'].replace('{current_script}',relative_script).replace('{question}',question).replace('{choices}',choices)
answer = self.GM_agent.speak(question_prompt, True)
is_right = 0
format_answer = json_format(answer)
try:
format_answer = format_answer['answer'].lower()
if data['type'][i] == 'b':
if truth.lower() in format_answer:
is_right = 1
else:
if format_answer[0] in truth.lower():
is_right = 1
except:
pass
self.evaluate_history.append(EvaluateItem(tester="GM", question = question, choices=choices, answer=answer,truth = truth, is_right=is_right, value=data['value'][i]))
def start(self):
self.self_introduction_phase()
count = 0
while count < self.args.max_turn:
self.open_talk()
count += 1
def save_args_to_json(self, args, filename):
args_dict = vars(args)
with open(filename, 'w') as file:
json.dump(args_dict, file, indent=4, ensure_ascii=False)
def mkdir_output_dir(self, args, post = ''):
# now = datetime.now()
# time_string = now.strftime("%Y%m%d%H%M%S")
# args.output_root_path = os.path.join(args.output_root_path, args.script_name+time_string)
# post = "_S_{}_C_{}_T_{}_Q_{}".format(args.sensor, args.constraint, args.max_turn, args.question_number)
args.output_root_path = os.path.join(args.output_root_path, args.script_name+post)
if not os.path.exists(args.output_root_path):
os.makedirs(args.output_root_path)
def save_params(self, args):
input_token = []
output_token = []
input_token_eva = []
output_token_eva = []
for i in range(len(self.agents)):
input_token += self.agents[i].session.input_token
output_token += self.agents[i].session.output_token
input_token_eva += self.agents[i].session.input_token_eva
output_token_eva += self.agents[i].session.output_token_eva
args.input_token = sum(input_token)
args.output_token = sum(output_token)
args.input_price = args.input_token * 0.0005 / 1000
args.output_price = args.output_token * 0.0015 / 1000
args.input_token_eva = sum(input_token_eva)
args.output_token_eva = sum(output_token_eva)
args.input_eva_price = args.input_token_eva * 0.0005 / 1000
args.output_eva_price = args.output_token_eva * 0.0015 / 1000
args.play_price = args.input_price + args.output_price
args.eva_price = args.input_eva_price + args.output_eva_price
self.save_args_to_json(args, os.path.join(args.output_root_path, 'args.json'))
def mkdir_output_dir_time(self, args):
now = datetime.now()
time_string = now.strftime("%Y%m%d%H%M%S")
args.output_root_path = os.path.join(args.output_root_path, args.script_name+time_string)
self.args.output_root_path = args.output_root_path
# post = "_S_{}_C_{}_T_{}_Q_{}".format(args.sensor, args.constraint, args.max_turn, args.question_number)
# args.output_root_path = os.path.join(args.output_root_path, args.script_name+post)
if not os.path.exists(args.output_root_path):
os.makedirs(args.output_root_path)
self.save_args_to_json(args, os.path.join(args.output_root_path, 'args.json'))
def save_all_evaluate(self, path):
path = os.path.join(path, 'evaluate')
xlsx_files = glob.glob(os.path.join(path, "*.xlsx"))
data = []
for file in xlsx_files:
df = pd.read_excel(file)
last_value = df["is_right"].iloc[-1]
detail_value = df["answer"].iloc[-1]
type_a = df["question"].iloc[-1]
type_b = df["choices"].iloc[-1]
type_c = df["truth"].iloc[-1]
filename = os.path.basename(file)
data.append((filename,type_a, type_b,type_c,detail_value, last_value, len(df)-1))
result_df = pd.DataFrame(data, columns=["filename", "type_a","type_b","type_c","detail_value", "score","length"])
result_df = result_df.sort_values(by='filename')
accuracy = result_df[~result_df['filename'].str.contains('GM') & ~result_df['filename'].str.contains('no_play')]['score'].mean()
accuracy_a = result_df[~result_df['filename'].str.contains('GM') & ~result_df['filename'].str.contains('no_play')]['type_a'].mean()
accuracy_b = result_df[~result_df['filename'].str.contains('GM') & ~result_df['filename'].str.contains('no_play')]['type_b'].mean()
accuracy_c = result_df[~result_df['filename'].str.contains('GM') & ~result_df['filename'].str.contains('no_play')]['type_c'].mean()
new_row = pd.DataFrame({'score': [accuracy],'type_a': [accuracy_a],'type_b': [accuracy_b],'type_c': [accuracy_c]})
result_df = pd.concat([result_df, new_row], ignore_index=True)
import numpy as np
def format_significant(x):
if isinstance(x, float):
return np.format_float_positional(x, precision=3, unique=False, fractional=False, trim='k')
return x
result_df = result_df.applymap(format_significant)
output_csv_path = os.path.join(path, "data_summary.csv")
result_df.to_csv(output_csv_path, index=False, encoding='utf-8-sig')
def evalute_para(game, path, prefix = ''):
game.evaluate()
game.save_evaluate_history(path, prefix)
def main():
"""play game"""
scriptmanager = ScriptManager(args)
game = Game(scriptmanager, args)
game.mkdir_output_dir(args)
game.start()
game.save_history(args.output_root_path)
path = args.output_root_path
evalute_para(game, path, "0")
evalute_para(game, path, "1")
evalute_para(game, path, "2")
game.save_all_evaluate(path)
game.save_params(args)
if __name__ == "__main__":
defined_questions = {
"English": [
"What was your timeline on the day of the incident?",
"How would you describe your relationship with the victim? Were there any conflicts or particularly close moments?",
"When was the last time you saw the victim? What was their emotional and physical state then?",
"Do you know if the victim had any enemies or conflicts with anyone?",
"What details or anomalies did you notice at the scene of the crime?",
"Did the victim mention anything to you or others that made them worried or fearful recently?",
"Did you notice any unusual people or behaviors on the day of the incident?",
"How much do you know about the victim's secrets or personal life?",
"Were there any items or remains found at the crime scene that could be related to the crime?",
"Do you have any personal opinions or theories about the case?"
],
"Chinese": [
"你在案发当天的时间线是怎样的?",
"你与死者的关系如何?有没有发生过任何争执或特别亲近的时刻?",
"你最后一次见到死者是什么时候?他们当时的情绪和状态怎样?",
"你知道死者有没有敌人或与人有冲突吗?",
"你发现了案发现场的哪些细节或异常之处?",
"死者最近有没有跟你或其他人提及过令他们担心或恐惧的事情?",
"你是否注意到案发当天有无不寻常的人物或行为出现?",
"关于死者的秘密或个人生活,你了解多少?",
"案发现场有没有发现任何可能与犯罪有关的物品或遗留物?",
"你对这起案件有什么自己的看法或理论吗?"
]
}
parser = argparse.ArgumentParser()
# for script
parser.add_argument('--script_root', default=r"./chinese", type=str,required=False)
parser.add_argument('--database_root', default=r"./database", type=str,required=False)
parser.add_argument('--script_name', default="134-致命喷泉(4人封闭)", type=str, required=False)
parser.add_argument('--prompt_path', default="./prompts_Werewolf.yaml", type=str,required=False)
parser.add_argument('--sensor_path', default="./sensors.json", type=str,required=False)
parser.add_argument('--load_history', default="/scratch/prj/lmrep/qinglin/Murder_Mystery_Game/log_Werewolf/134-致命喷泉(4人封闭)Werewolf", type=str,required=False)
# for model
parser.add_argument('--temperature', default=1, type=float, help='the diversity of generated text')
parser.add_argument('--model_type', default="gpt35", type=str, required=False, help='[gpt35, gpt4, llama13b]')
# for game
parser.add_argument('--rsl', default=4000, type=float, help='the max length for relative script length (retrival from current script by RAG')
parser.add_argument('--rchl', default=4000, type=float, help='the max length for relative chat history length (retrival from chat history by RAG')
parser.add_argument('--each_rsl', default=3000, type=float, help='the max length for each agent\'s relative script length (retrival from current script by RAG')
parser.add_argument('--question_number', default='1', type=str, help='the max length for each agent\'s relative script length (retrival from current script by RAG')
parser.add_argument('--max_turn', default=3, type=int, help='the max length for each agent\'s relative script length (retrival from current script by RAG')
parser.add_argument('--constraint', default=1, type=int, help='the max length for each agent\'s relative script length (retrival from current script by RAG')
parser.add_argument('--sensor', default=1, type=int, help='the max length for each agent\'s relative script length (retrival from current script by RAG')
parser.add_argument('--is_english', default=1, type=int, help='the max length for each agent\'s relative script length (retrival from current script by RAG')
# TODA LLAMA
parser.add_argument('--ckpt_dir', default="/scratch/prj/lmrep/llama2_model/Llama-2-13b-hf", type=str,required=False, help='if llama')
# for log
parser.add_argument('--output_root_path', default=r'./log_Werewolf', type=str, required=False, help='max_tree_depth')
args = parser.parse_args()
agent_num2each_rsl={
9: 1200,
8: 1600,
7: 2000,
6: 2500,
5: 3000,
4: 3500,
}
model2ckpt = {
"gemma7b": "path",
"llama70b": "path",
"llama13b": "path",
"llama7b": "path",
"gpt35": "",
"gpt4": ""
}
if args.is_english:
args.database_root = "./database_english"
args.script_root = "./english"
args.ckpt_dir = model2ckpt[args.model_type]
main()