-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculation_library.py
214 lines (168 loc) · 8.66 KB
/
calculation_library.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import pandas as pd
import numpy as np
def construct_freq_df(df_copy):
'''
Construct a dataframe such that indices are seperated by delta 1 min from the Market Data
and put it in a format that markov matrices can be obtained by the pd.crosstab() method
'''
#This is here in case user passes the actual dataframe, we do not want to modify the actual dataframe
df = df_copy.copy()
#Blank dataframe placeholder
frames = pd.DataFrame()
#Set the index to timestamp and convert it to pd timestamp
#The datatype of the timestamp column should be string
df.set_index('timestamp', inplace=True)
df.index = pd.to_datetime(df.index)
#We need to get customer behaviour from entry to checkout for each unique customerr
for customer in df['customer_no'].unique():
#get customer
temp_df = df[df['customer_no'] == customer]
#expand timestamp index such that delta T is 1 min, and forward fill isles
temp_df = temp_df.asfreq('T',method='ffill')
#insert 'entry' 1 min before first isle
#re sort index so that times make sense
#(WE MIGHT NEED TO SKIP THIS NOT SURE IF ENTRY STATE IS REQUIRED)
temp_df.loc[temp_df.index[0] - pd.to_timedelta('1min')] = [customer,'entry']
temp_df.sort_index(inplace=True)
#after is simply a shift(-1) of current location
#checkout location does not have an after, so drop the NA's here
temp_df['after'] = temp_df['location'].shift(-1)
temp_df.dropna(inplace=True)
#join the frequency table for each customer
frames = pd.concat([frames, temp_df], axis=0)
#return the frequency frame
return frames
def generate_markov_matrix(df_copy):
'''
Generate the Markov Matrix for a Market Data dataframe, structured by constuct_freq_df() function
NOTE: Columns indicate current state, rows indicate after state, probabilities are read current -> after probability
sum of columns should add to 1. Since Checkout state is a sink, all after probabilities are 0, not calculated.
'''
df = df_copy.copy()
return pd.crosstab(df['after'], df['location'], normalize=1)
class Customer:
def __init__(self, idn, state, transition_mat):
self.id = idn
self.state = state
self.transition_mat = transition_mat
self.tr_array_dict = {
'dairy' : self.transition_mat[0,:],
'drinks' : self.transition_mat[1,:],
'entry' : self.transition_mat[2,:],
'fruit' : self.transition_mat[3,:],
'spices' : self.transition_mat[4,:]
}
def __repr__(self):
"""
Returns a csv string for that customer.
"""
return f'{self.id};{self.state}'
def is_active(self):
"""
Returns True if the customer has not reached the checkout
for the second time yet, False otherwise.
"""
if self.state != 'checkout':
return True
if self.state == 'checkout':
return False
def next_state(self):
"""
Propagates the customer to the next state
using a weighted random choice from the transition probabilities
conditional on the current state.
Returns nothing.
"""
self.state = np.random.choice(['checkout', 'dairy', 'drinks', 'fruit', 'spices'], p=self.tr_array_dict[f'{self.state}'])
class SuperMarket:
"""manages multiple Customer instances that are currently in the market.
"""
def __init__(self,transition_matrix):
#List contains the customer objects
self.customers = []
#Timing stuff set to some defults, open and close time get their values from the simulate() method when called
self.open_time = pd.to_datetime('08:00',format='%H:%M')
self.close_time = pd.to_datetime('17:00',format='%H:%M')
self.current_time = pd.to_datetime('08:00',format='%H:%M')
#Customer id counter, so that we can consistently assign ids to new customers
self.last_id = 0
#current and total state during a simulation, total state is initiated like this because it becomes the header of a dataframe
#when returned from results() method, also it needs to be in 1x3 shapre for np.vstack() to work in update_total_state()
self.current_state = np.array([])
self.total_state = np.array(['timestamp','customer_id','customer_location'])
#transition matrix is assigned when initiating the SuperMarket object
self.transition_matrix = transition_matrix
def __repr__(self):
pass
def write_current_state(self):
"""
writes the current state during a simulation. Makes rows with current time, customer.id and customer.state of current customers in the market
"""
self.current_state = np.array([[self.current_time, customer.id, customer.state] for customer in self.customers])
def update_total_state(self):
"""
updates the total state, this is constantly updated by the current state during a simulation which yields the final data from the simulation
can be directly accessed or returned as a neat dataframe by the results() method
"""
self.total_state = np.vstack((self.total_state,self.current_state))
def next_minute(self):
"""propagates all customers to the next state. Adds one minute to current time and updates all customers in the market to their next state
"""
self.current_time += pd.Timedelta(1,'m')
#self.customers = [customer.next_state() for customer in self.customers]
for customer in self.customers:
customer.next_state()
#return get_time()
def add_new_customers(self, n_customers):
"""randomly creates new customers. Adds n_customer number of customers to the current list, they all start at the entry, and assigned
an id that is +1 of the current id. Afterwards updates the last id by the latest customer
"""
self.customers = self.customers + [Customer(self.last_id + 1 + i, 'entry', self.transition_matrix) for i in range(n_customers)]
self.last_id = self.customers[-1].id
def remove_exiting_customers(self):
"""removes every customer that is not active any more. Goes through the customer list and if they are active keeps them,
the ones in checkout are dropped
"""
self.customers = [customer for customer in self.customers if customer.is_active() == True]
def count_checkout(self):
"""
counts the number of customers that are at checkout at the current_state. This would be easier if current_state was a dataframe
but since it is a numpy matrix we return the submatrix where the 3rd row is checkout, then we "pseudo count" them by looking at the shape
"""
row_mask = (self.current_state[:,2] == 'checkout')
return self.current_state[row_mask,:].shape[0]
def simulate(self,initial_customers=20,open_time='8:00',close_time='8:10'):
"""
Simulates the SuperMarket. Gets initial customers, opening time and closing time from the user
"""
self.current_state = np.array([])
self.total_state = np.array(['timestamp','customer_id','customer_location'])
#Timing stuff
self.open_time = pd.to_datetime(open_time,format='%H:%M')
self.close_time = pd.to_datetime(close_time,format='%H:%M')
self.current_time = self.open_time
#We first add initial_customers of customers at the entry
self.add_new_customers(initial_customers)
#We simlate until the market closes
while self.current_time <= self.close_time:
#write the current state and update the total state
self.write_current_state()
self.update_total_state()
#get the number of customers at checkout
n_checkout = self.count_checkout()
#remove the customers who are at checkout
self.remove_exiting_customers()
#advance to next minute (also updates the states of the current customers)
self.next_minute()
#POTENTIAL BUG: this is kind of weird, we shold not need the if statement but if it is not there it somehow adds new customers
#probably because n_checkout could also be NaN, needs a revisit.
if n_checkout > 0:
self.add_new_customers(n_checkout)
def results(self):
'''
Returns Simulation results in a DataFrame. Simply converts the total_state numpy matrix to a more friendly dataframe
'''
data = self.total_state[1:,1:]
index = self.total_state[1:,0]
columns = self.total_state[0,1:]
return pd.DataFrame(data=data,index=index,columns=columns)