-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
227 lines (188 loc) · 7.04 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import time
from omegaconf import open_dict
import torch
import wandb
from src.datasets import get_dataloader, get_dataset, maybe_dictionarize
from src.eval.eval import eval_single_dataset
from src.models import ImageClassifier, ImageEncoder, get_classification_head
from src.utils import initialize_wandb, parse_arguments
from src.utils.distributed import (
cleanup_ddp,
distribute_loader,
is_main_process,
setup_ddp,
)
from src.utils.utils import LabelSmoothing, cosine_lr
from src.utils.variables_and_paths import get_finetuned_path, get_zeroshot_path
def finetune(rank, args):
setup_ddp(rank, args.world_size, port=args.port)
if is_main_process():
initialize_wandb(args)
train_dataset = args.train_dataset
ft_path = get_finetuned_path(args.model_location, train_dataset, args.model)
zs_path = get_zeroshot_path(args.model_location, train_dataset, args.model)
if os.path.exists(zs_path) and os.path.exists(ft_path):
if is_main_process():
print(f"Skipping fine-tuning because {ft_path} exists.")
return zs_path, ft_path
image_encoder = ImageEncoder(args.model)
classification_head = get_classification_head(args, train_dataset)
model = ImageClassifier(image_encoder, classification_head)
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"The toal number of trainable parameters is {num_params/1e6:.2f}M")
model.freeze_head()
model = model.cuda()
preprocess_fn = model.train_preprocess
print_every = 100
dataset = get_dataset(
train_dataset,
preprocess_fn,
location=args.data_location,
batch_size=args.batch_size,
)
data_loader = get_dataloader(dataset, is_train=True, args=args, image_encoder=None)
num_batches = len(dataset.train_loader)
# Distribute the data and model across the GPUs.
ddp_loader = distribute_loader(data_loader)
ddp_model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[rank], find_unused_parameters=True, output_device=rank
)
print("hello from process", rank)
if args.ls > 0:
loss_fn = LabelSmoothing(args.ls)
else:
loss_fn = torch.nn.CrossEntropyLoss()
params = [p for p in ddp_model.parameters() if p.requires_grad]
optimizer = torch.optim.AdamW(params, lr=args.lr, weight_decay=args.wd)
scheduler = cosine_lr(
optimizer,
args.lr,
args.warmup_length,
args.epochs * num_batches // args.num_grad_accumulation,
)
# Saving zero-shot model
if is_main_process():
ckpdir = os.path.join(args.save_dir, train_dataset)
os.makedirs(ckpdir, exist_ok=True)
model_path = get_zeroshot_path(args.model_location, train_dataset, args.model)
ddp_model.module.image_encoder.save(model_path)
for epoch in range(args.epochs):
ddp_model.train()
for i, batch in enumerate(ddp_loader):
start_time = time.time()
step = (
i // args.num_grad_accumulation
+ epoch * num_batches // args.num_grad_accumulation
)
batch = maybe_dictionarize(batch)
inputs = batch["images"].cuda()
labels = batch["labels"].cuda()
data_time = time.time() - start_time
logits = ddp_model(inputs)
loss = loss_fn(logits, labels)
loss.backward()
if (i + 1) % args.num_grad_accumulation == 0:
scheduler(step)
torch.nn.utils.clip_grad_norm_(params, 1.0)
optimizer.step()
optimizer.zero_grad()
batch_time = time.time() - start_time
if (
args.checkpoint_every > 0
and step % args.checkpoint_every == 0
and is_main_process()
):
print("Saving checkpoint.")
model_path = get_finetuned_path(
args.model_location, train_dataset, args.model
).replace(".pt", f"_{step}.pt")
ddp_model.module.image_encoder.save(model_path)
if (
step % print_every == 0
and ((i + 1) % args.num_grad_accumulation == 0)
and is_main_process()
):
percent_complete = 100 * i / len(ddp_loader)
print(
f"Train Epoch: {epoch} [{percent_complete:.0f}% {i}/{len(dataset.train_loader)}]\t" # noqa: E501
f"Loss: {loss.item():.6f}\tData (t) {data_time:.3f}\tBatch (t) {batch_time:.3f}\t", # noqa: E501
flush=True,
)
wandb.log(
{
f"{train_dataset}/train/loss": loss.item(),
"train/data_time": data_time,
"train/batch_time": batch_time,
}
)
if is_main_process():
# We only need to evaluate the model on the first GPU.
image_encoder = ddp_model.module.image_encoder
test_accuracy = eval_single_dataset(image_encoder, train_dataset, args)
if is_main_process():
ft_path = get_finetuned_path(args.model_location, train_dataset, args.model)
zs_path = get_zeroshot_path(args.model_location, train_dataset, args.model)
image_encoder.save(ft_path)
return zs_path, ft_path
cleanup_ddp()
if __name__ == "__main__":
# uncomment all the datasets for fine-tuning
train_datasets = [
# "MNIST",
# "Cars",
"DTD",
# "EuroSAT",
# "GTSRB",
# "RESISC45",
# "SUN397",
# "SVHN",
# "CIFAR100",
# "STL10",
# "Flowers102",
# "OxfordIIITPet",
# "FER2013",
# "PCAM",
# "FashionMNIST",
# "CIFAR10",
# "Food101",
# "RenderedSST2",
# "KMNIST",
# "EMNIST",
]
epochs = {
"Cars": 35,
"DTD": 76,
"EuroSAT": 12,
"GTSRB": 11,
"MNIST": 5,
"RESISC45": 15,
"SUN397": 14,
"SVHN": 4,
"CIFAR10": 6,
"CIFAR100": 6,
"STL10": 60,
"Food101": 4,
"Flowers102": 147,
"FER2013": 10,
"PCAM": 1,
"OxfordIIITPet": 82,
"RenderedSST2": 39,
"EMNIST": 2,
"FashionMNIST": 5,
"KMNIST": 5,
}
for dataset in train_datasets:
args = parse_arguments()
args.lr = 1e-5
args.epochs = epochs[dataset]
args.train_dataset = dataset + "Val"
args.save_dir = os.path.join(args.model_location, args.model)
# We use gradient accumulation to simulate larger batch sizes if the model does not fit in memory.
args.batch_size = 64 if args.model == "ViT-L-14" else 128
args.num_grad_accumulation = 2 if args.model == "ViT-L-14" else 1
print("=" * 100)
print(f"Finetuning {args.model} on {dataset}")
print("=" * 100)
torch.multiprocessing.spawn(finetune, args=(args,), nprocs=args.world_size)
# finetune(0, args)