-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKernelRegression.py
125 lines (111 loc) · 5.08 KB
/
KernelRegression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import logging
import os
logging.basicConfig(level=logging.DEBUG)
class KernelRegression:
def __init__(self, dirname, mktFile="SPY"):
self.dirname = dirname
self.sectors = { 'Communication services': 'XLC',
'Consumer discretionary': 'XLY',
'Consumer staples': 'XLP',
'Energy': 'XLE',
'Financials': 'XLF',
'Health care': 'XLV',
'Industrials': 'XLI',
'Materials': 'XLB',
'Real estate': 'XLRE',
'Technology': 'XLK',
'Utilities': 'XLU'
}
self.mktFile = mktFile
self.logger = logging.getLogger(self.__class__.__name__)
self.symbolToEtf = {v:k for k, v in self.sectors.items()}
self.dfs = {}
self.mktDf = None
self.variance = None
self.readFiles()
self.calculateEndogExogVars()
def readFiles(self):
for symbol in self.symbolToEtf.keys():
self.dfs[symbol] = pd.read_csv(os.path.join(self.dirname, f"{symbol}.csv"), parse_dates=["Date"])
self.mktDf = pd.read_csv(os.path.join(self.dirname, f"{self.mktFile}.csv"), parse_dates=["Date"])
def calculateEndogExogVars(self):
dfs = [self.mktDf] + list(self.dfs.values())
for df in dfs:
df.loc[:, "returns"] = 0
price = df.loc[:, "Close"].values
returns = price[1:] / price[0:-1] - 1
df.loc[0:df.shape[0]-2, "returns"] = returns
def calculateKernels(self, x, xi):
multipliers = np.array([1.0/h for h in range(len(xi), 0, -1)])
kernels = (multipliers / self.variance) * np.exp(-(((x - xi) / self.variance)**2)/2.0)
normalizedKernels = kernels / kernels.sum()
return normalizedKernels
def calculateRMSE(self, actual, predicted):
diff = (actual - predicted)
return np.sqrt(np.sum(diff ** 2) / diff.shape[0])
def calculateAdjustedR2(self, actual, predicted):
diff = (actual - predicted)
ssModel = np.sum(diff ** 2)
avg = np.mean(actual)
ssTotal = np.sum((actual - avg) ** 2)
n = actual.shape[0]
adjR2 = 1 - ((n-1)/(n-10-1)) * ssModel/ssTotal
return adjR2
def plot(self, actual, predicted, sector, begin, end):
fig, axs = plt.subplots(1, 1, figsize=(10, 10))
df = self.dfs[sector]
dates = df.loc[begin:end, "Date"].values
axs.plot(dates, actual, label="Actual")
axs.plot(dates, predicted, label="Predicted")
axs.grid()
axs.legend()
axs.set_xlabel("Date")
axs.set_ylabel("Daily Return")
axs.set(title=sector)
plt.savefig(os.path.join(self.dirname, f"kernel_{sector}.jpeg"),
dpi=500)
plt.show()
def predict(self, beginDate, endDate):
beginDate = pd.to_datetime(beginDate)
endDate = pd.to_datetime(endDate)
rmseList = []
sectorList = []
symbolList = []
adjR2List = []
for sector in self.symbolToEtf.keys():
df = self.dfs[sector]
begin = df.loc[df.Date == beginDate, :].index[0]
end = df.loc[df.Date == endDate, :].index[0]
beginMkt = self.mktDf.loc[self.mktDf.Date == beginDate, :].index[0]
actual = df.loc[begin:end, "returns"].values
predicted = np.zeros(actual.shape[0], dtype=np.float32)
for j in range(begin, end+1, 1):
beginIdx = beginMkt + j - begin
mktRet = self.mktDf.loc[beginIdx, "returns"]
self.variance = np.std(self.mktDf.loc[beginIdx-10:beginIdx, "returns"].values)
prevMktReturns = self.mktDf.loc[beginIdx-10:beginIdx, "returns"].values
prevSectorReturns = df.loc[j - 10:j, "returns"].values
kernels = self.calculateKernels(mktRet, prevMktReturns)
predicted[j-begin] = np.dot(prevSectorReturns, kernels)
rmse = self.calculateRMSE(actual, predicted)
adjr2 = self.calculateAdjustedR2(actual, predicted)
self.plot(actual, predicted, sector, begin, end)
self.logger.info("RMSE for sector %s: %f, adj R^2: %f", sector, rmse, adjr2)
rmseList.append(rmse)
sectorList.append(self.symbolToEtf[sector])
symbolList.append(sector)
adjR2List.append(adjr2)
df = pd.DataFrame({"Sector": sectorList,
"Symbol": symbolList,
"RMSE": rmseList,
"Adj. R2": adjR2List})
self.logger.info(df)
if __name__ == "__main__":
dirname = r"C:\prog\cygwin\home\samit_000\RLPy\data_merged\sectors"
kernelReg = KernelRegression(dirname)
beginDate = "2020-01-02"
endDate = "2024-07-12"
kernelReg.predict(beginDate, endDate)