-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRREF.py
95 lines (82 loc) · 2.48 KB
/
RREF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
'''
This Code transforms a matrix into Row Reduced Echelon Form using the Row Echelon Form of a matrix
Stage : Developmental
Many test cases are checked, yet to check some corner cases. If you notice a corner case that gives
error, please create a branch and update accordingly
or mail me at: de.arkadipta05@gmail.com, ai20mtech14002@iith.ac.in , arkadipta.de@gcettb.ac.in
Author: Arkadipta De
'''
import numpy as np
def Row_Echelon(A):
'''
Function to transform a matrix into Row-Echelon Form
'''
row = A.shape[0]
column = A.shape[1]
if row==0 or column==0:
return A
for i in range(len(A)) :
if A[i,0] !=0 :
break
else:
A_Below = Row_Echelon(A[:,1:])
return np.hstack([A[:,:1],A_Below])
if i>0:
ith_row = A[i].copy()
A[i] = A[0]
A[0] = ith_row
pivot = A[0,0]
A[0] = A[0]/pivot #Normalize Pivot's Row
A[1:] = A[1:] - A[0]*A[1:,0:1] #Make Pivot Column 0
A_Below = Row_Echelon(A[1:,1:])
A_Stacked = np.hstack([A[1:,:1],A_Below])
return np.vstack([A[:1],A_Stacked])
def Reduced_Row_Echelon_Form(A):
'''
Function to transform a matrix into Reduced-Row-Echelon Form
'''
A = Row_Echelon(A)
row = A.shape[0]-1
col = A.shape[1]
while (row > 0):
i = row
for j in range(col):
if A[i,j]==1:
while (i > 0):
A[i-1] -= A[row]*A[i-1,j]
i-=1
row-=1
return A
def Inverse(A):
'''
Function to Extract Inverse Matrix from Augmented RRE of a Matrix
Input: Augmented RRE Form of a Matrix
'''
row = A.shape[0]
col = A.shape[1]
if (row!=col):
print("\nInverse Does not exist")
elif np.linalg.det(A)==0:
print("\nInverse doesn't exist.")
else:
AI = np.hstack([A,np.identity(row)])
AI_RREF = Reduced_Row_Echelon_Form(AI)
AI_row = AI_RREF.shape[0]
AI_col = AI_RREF.shape[1]
return AI_RREF[:,int(AI_col/2):]
# Driver Code
A1 = np.array([[1,0,0],[0,1,0],[0,0,1]])
A2 = np.array([[0,0,1],[1,0,0],[0,1,0]])
A3 = np.array([[0,0,1,5],[0,1,2,1],[0,1,2,1]])
A4 = np.array([[1,3,1],[0,2,3],[34,-2,-1]])
A5 = np.array([[1,2,2],[-2,9,17],[1,0,0],[0,1,0]])
A6 = np.array([[1,1,1,1,1.0],[1,1,1,1,1],[1,1,1,1,1]])
A7 = np.array([[1,1,1,1,1.0],[1,1,2,2,2],[1,1,1,4,5]])
A8 = np.array([[1,1,1,1],[1,1,1,1],[1,2,3,4]])
A9 = np.array([[1,1,1],[1,1,2],[2,3,1]])
A = A5
RE = Row_Echelon(A)
print('Row Echelon Form = \n',RE)
RRE = Reduced_Row_Echelon_Form(A)
print('\nReduced Row Echelon Form = \n',RRE)
print("Inverse = \n",Inverse(A))