-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
64 lines (49 loc) · 1.76 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
# Sigmoid activation function
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# Derivative of sigmoid
def sigmoid_derivative(x):
return x * (1 - x)
# Input dataset
inputs = np.array([
[0, 0],
[0, 1],
[1, 0],
[1, 1]
])
# Expected output
expected_output = np.array([
[0],
[1],
[1],
[0]
])
epochs = 10000
lr = 0.1
inputLayerNeurons, hiddenLayerNeurons, outputLayerNeurons = 2, 2, 1
# Random weights and bias initialization
hidden_weights = np.random.uniform(size=(inputLayerNeurons, hiddenLayerNeurons))
hidden_bias = np.random.uniform(size=(1, hiddenLayerNeurons))
output_weights = np.random.uniform(size=(hiddenLayerNeurons, outputLayerNeurons))
output_bias = np.random.uniform(size=(1, outputLayerNeurons))
# Training the neural network
for _ in range(epochs):
# Forward pass
hidden_layer_activation = np.dot(inputs, hidden_weights)
hidden_layer_activation += hidden_bias
hidden_layer_output = sigmoid(hidden_layer_activation)
output_layer_activation = np.dot(hidden_layer_output, output_weights)
output_layer_activation += output_bias
predicted_output = sigmoid(output_layer_activation)
# Backpropagation
error = expected_output - predicted_output
d_predicted_output = error * sigmoid_derivative(predicted_output)
error_hidden_layer = d_predicted_output.dot(output_weights.T)
d_hidden_layer = error_hidden_layer * sigmoid_derivative(hidden_layer_output)
# Update weights and biases
output_weights += hidden_layer_output.T.dot(d_predicted_output) * lr
output_bias += np.sum(d_predicted_output, axis=0, keepdims=True) * lr
hidden_weights += inputs.T.dot(d_hidden_layer) * lr
hidden_bias += np.sum(d_hidden_layer, axis=0, keepdims=True) * lr
print(predicted_output)