-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpinecone_gen.py
60 lines (45 loc) · 1.79 KB
/
pinecone_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import chainlit as cl
from langchain_community.chat_models import ChatOpenAI
from langchain_community.embeddings import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.schema import HumanMessage
from langchain_community.vectorstores import Chroma
from langchain_community.vectorstores import Pinecone
from langchain_pinecone import PineconeVectorStore
# from transformers import AutoModelForCausalLM, AutoTokenizer
# import torch
# from pinecone import Pinecone, ServerlessSpec
import os
# Pinecone 설정
# pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
index_name = 'vector-db'
# index = pc.Index(index_name)
embeddings = OpenAIEmbeddings(
model="text-embedding-ada-002"
)
database = PineconeVectorStore.from_existing_index(index_name, embeddings)
chat = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=os.environ['OPENAI_API_KEY'])
prompt = PromptTemplate(template="""문장을 바탕으로 질문에 답하세요.
문장:
{document}
질문: {query}
""", input_variables=["document", "query"])
@cl.on_chat_start
async def on_chat_start():
await cl.Message(content="준비되었습니다! 메시지를 입력하세요!").send()
@cl.on_message
async def on_message(input_message):
input_message = input_message.content
documents = database.similarity_search(input_message, k=3) #← input_message로 변경
documents_string = ""
for document in documents:
documents_string += f"""
---------------------------
{document.page_content}
"""
break
result = chat([
HumanMessage(content=prompt.format(document=documents_string,
query=input_message)) #← input_message로 변경
])
await cl.Message(content=result.content).send() #← 챗봇의 답변을 보냄