-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
319 lines (276 loc) · 10.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
<!DOCTYPE html>
<html>
<head>
<meta charset = "utf-8">
<title>WebGPU Life</title>
</head>
<body>
<canvas width="512" height="512"></canvas>
<script type="module">
const GRID_SIZE = 32;
const UPDATE_INTERVAL = 400; // Update every 200ms (5 times/sec)
const WORKGROUP_SIZE = 8;
const canvas = document.querySelector("canvas");
// WebGPU device initialization
if (!navigator.gpu) {
throw new Error("WebGPU not supported on this browser.");
}
const adapter = await navigator.gpu.requestAdapter();
if (!adapter) {
throw new Error("No appropriate GPUAdapter found.");
}
const device = await adapter.requestDevice();
const context = canvas.getContext("webgpu");
const canvasFormat = navigator.gpu.getPreferredCanvasFormat();
context.configure({
device: device,
format: canvasFormat,
});
// Create a buffer with the vertices for a single cell.
const vertices = new Float32Array([
// X, Y,
-0.8, -0.8, //triangle z
0.8, -0.8,
0.8, 0.8,
0.8, 0.8, //triangle 2
-0.8, 0.8,
-0.8, -0.8,
]);
const vertexBuffer = device.createBuffer({
label: "Cell vertices",
size: vertices.byteLength,
usage: GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_DST,
});
device.queue.writeBuffer(vertexBuffer, 0, vertices);
const vertexBufferLayout = {
arrayStride: 8,
attributes: [
{
format: "float32x2",
offset: 0,
shaderLocation: 0, // Position. Matches @location(0) in the @vertex shader.
},
],
};
const bindGroupLayout = device.createBindGroupLayout({
label: "Cell Bind Group Layout",
entries: [
{
binding: 0,
visibility: GPUShaderStage.VERTEX | GPUShaderStage.COMPUTE,
buffer: {}, // Grid uniform buffer
},
{
binding: 1,
visibility: GPUShaderStage.VERTEX | GPUShaderStage.COMPUTE,
buffer: { type: "read-only-storage" }, // Cell state input buffer
},
{
binding: 2,
visibility: GPUShaderStage.COMPUTE,
buffer: { type: "storage" }, // Cell state output buffer
},
],
});
const pipelineLayout = device.createPipelineLayout({
label: "Cell Pipeline Layout",
bindGroupLayouts: [bindGroupLayout],
});
const cellShaderModule = device.createShaderModule({
label: "Cell shader",
code: `
struct VertexInput {
@location(0) pos: vec2f,
@builtin(instance_index) instance: u32,
};
struct VertexOutput {
@builtin(position) pos: vec4f,
@location(0) cell: vec2f,
};
@group(0) @binding(0) var<uniform> grid: vec2f;
@group(0) @binding(1) var<storage> cellState: array<u32>;
@vertex
fn vertexMain(input: VertexInput) -> VertexOutput {
let i = f32(input.instance);
let cell = vec2f(i % grid.x, floor(i / grid.x));
let state = f32(cellState[input.instance]);
let cellOffset = cell / grid * 2;
let gridPos = ( input.pos * state + 1) / grid - 1 + cellOffset;
var output: VertexOutput;
output.pos = vec4f(gridPos, 0, 1);
output.cell = cell / grid;
return output;
}
@fragment
fn fragmentMain(input: VertexOutput) -> @location(0) vec4f {
return vec4f(input.cell, 1.0 - input.cell.x, 1);
}
`,
});
// Create a pipeline that renders the cell.
const cellPipeline = device.createRenderPipeline({
label: "Cell pipeline",
layout: pipelineLayout,
vertex: {
module: cellShaderModule,
entryPoint: "vertexMain",
buffers: [vertexBufferLayout],
},
fragment: {
module: cellShaderModule,
entryPoint: "fragmentMain",
targets: [
{
format: canvasFormat,
},
],
},
});
// Create the compute shader that will process the game of life simulation.
const simulationShaderModule = device.createShaderModule({
label: "Life simulation shader",
code: `
@group(0) @binding(0) var<uniform> grid: vec2f;
@group(0) @binding(1) var<storage> cellStateIn: array<u32>;
@group(0) @binding(2) var<storage, read_write> cellStateOut: array<u32>;
fn cellIndex(cell: vec2u) -> u32 {
return (cell.y % u32(grid.y)) * u32(grid.x) +
(cell.x % u32(grid.x));
}
fn cellActive(x: u32, y: u32) -> u32 {
return cellStateIn[cellIndex(vec2(x, y))];
}
@compute @workgroup_size(${WORKGROUP_SIZE}, ${WORKGROUP_SIZE})
fn computeMain(@builtin(global_invocation_id) cell: vec3u) {
// Determine how many active neighbors this cell has.
let activeNeighbors = cellActive(cell.x+1, cell.y+1) +
cellActive(cell.x+1, cell.y) +
cellActive(cell.x+1, cell.y-1) +
cellActive(cell.x, cell.y-1) +
cellActive(cell.x-1, cell.y-1) +
cellActive(cell.x-1, cell.y) +
cellActive(cell.x-1, cell.y+1) +
cellActive(cell.x, cell.y+1);
let i = cellIndex(cell.xy);
// Conway's game of life rules:
switch activeNeighbors {
case 2: {
cellStateOut[i] = cellStateIn[i];
}
case 3: {
cellStateOut[i] = 1;
}
default: {
cellStateOut[i] = 0;
}
}
}
`
});
// Create a compute pipeline that updates the game state.
const simulationPipeline = device.createComputePipeline({
label: "Simulation pipeline",
layout: pipelineLayout,
compute: {
module: simulationShaderModule,
entryPoint: "computeMain",
},
});
// Create a uniform buffer that describes the grid.
const uniformArray = new Float32Array([GRID_SIZE, GRID_SIZE]);
const uniformBuffer = device.createBuffer({
label: "Grid Uniforms",
size: uniformArray.byteLength,
usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST,
});
device.queue.writeBuffer(uniformBuffer, 0, uniformArray);
// Create an array representing the active state of each cell.
const cellStateArray = new Uint32Array(GRID_SIZE * GRID_SIZE);
// Create two storage buffers to hold the cell state.
const cellStateStorage = [
device.createBuffer({
label: "Cell State 1",
size: cellStateArray.byteLength,
usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST,
}),
device.createBuffer({
label: "Cell State 2",
size: cellStateArray.byteLength,
usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST,
}),
];
// Set each cell to a random state, then copy the JavaScript array into
// the storage buffer.
for (let i = 0; i < cellStateArray.length; ++i) {
cellStateArray[i] = Math.random() > 0.6 ? 1 : 0;
}
device.queue.writeBuffer(cellStateStorage[0], 0, cellStateArray);
// Create a bind group to pass the grid uniforms into the pipeline
const bindGroups = [
device.createBindGroup({
label: "Cell renderer bind group A",
layout: bindGroupLayout,
entries: [
{
binding: 0,
resource: { buffer: uniformBuffer },
},
{
binding: 1,
resource: { buffer: cellStateStorage[0] },
},
{
binding: 2,
resource: { buffer: cellStateStorage[1] },
},
],
}),
device.createBindGroup({
label: "Cell renderer bind group B",
layout: bindGroupLayout,
entries: [
{
binding: 0,
resource: { buffer: uniformBuffer },
},
{
binding: 1,
resource: { buffer: cellStateStorage[1] },
},
{
binding: 2,
resource: { buffer: cellStateStorage[0] },
},
],
}),
];
let step = 0;
function updateScreen(){
const encoder = device.createCommandEncoder();
const computePass = encoder.beginComputePass();
computePass.setPipeline(simulationPipeline),
computePass.setBindGroup(0, bindGroups[step % 2]);
const workgroupCount = Math.ceil(GRID_SIZE / WORKGROUP_SIZE);
computePass.dispatchWorkgroups(workgroupCount, workgroupCount);
computePass.end();
step++;
const pass = encoder.beginRenderPass({
colorAttachments: [{
view: context.getCurrentTexture().createView(),
loadOp: "clear",
clearValue: { r: 0.2, g: 0.1, b: 0.4, a: 1 }, // New line
storeOp: "store",
},
],
});
pass.setPipeline(cellPipeline);
pass.setBindGroup(0, bindGroups[step % 2]);
pass.setVertexBuffer(0, vertexBuffer);
pass.draw(vertices.length / 2, GRID_SIZE * GRID_SIZE);
pass.end();
device.queue.submit([encoder.finish()]);
}
setInterval(updateScreen, UPDATE_INTERVAL);
</script>
</body>
</html>