-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclique-graphe_phi-vs-s.py
201 lines (137 loc) · 5.93 KB
/
clique-graphe_phi-vs-s.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
## Varying s
import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import json
from numba import njit, prange, jit, int_, float_
import time
# useful functions
@jit(int_(int_, int_, int_, float_, float_, int_ ))
def simulate_clique(N, M, nb_colonies, migration_rate, s, tmax):
assert 1 - (nb_colonies - 1) * migration_rate >= 0
b = True
t = 1
i_nodes = np.zeros(nb_colonies, dtype=int_) # list of the number of mutants in each node
i_nodes[0] = 1
#N_nodes = N * np.ones(nb_colonies, dtype=int_) # population size in each node
#M_nodes = M * np.ones(nb_colonies, dtype=int_) # update size in each node
# Creating a directed graph (migration rates)
DG = np.zeros((nb_colonies, nb_colonies), dtype=float_)
for node1 in range(nb_colonies):
for node2 in range(nb_colonies):
if node1 == node2:
weight = 1 - (nb_colonies - 1) * migration_rate
else:
weight = migration_rate
DG[node1, node2] = weight
#trajectories = np.zeros((tmax, nb_colonies))
#trajectories[0, :] = i_nodes
while t < tmax and b:
# Choose a random node
selected_node = np.random.randint(0, nb_colonies) #!!!!
# Hypergeometrical sampling
ngood = i_nodes[selected_node]
nbad = N - ngood
nb_mutants_before_update = np.random.hypergeometric(ngood, nbad, M)
# Binomial sampling
x_tilde = sum([i_nodes[k] * DG[k, selected_node]/N for k in range(nb_colonies)])
#print('x_tilde:', x_tilde)
prob = x_tilde * (1 + s) / (1 + x_tilde * s)
n_trials = M
nb_mutants_after_update = np.random.binomial(n_trials, prob)
# Update mutants in the node
i_nodes[selected_node] = ngood - nb_mutants_before_update + nb_mutants_after_update
#trajectories[t, :] = i_nodes
t += 1
b = sum(i_nodes) < nb_colonies*N and (i_nodes > 0).any()
if sum(i_nodes) == nb_colonies*N:
fixation = 1
else:
fixation = 0
#if t < tmax:
#for tt in range(t, tmax):
#trajectories[tt, :] = trajectories[t - 1, :]
return fixation
@njit(parallel=True)
def simulate_multiple_trajectories_clique(N, M, nb_colonies, migration_rate, s, tmax, nb_trajectories=100):
#all_trajectories = np.zeros((int(nb_trajectories), int(tmax)))
#fixation_seq = np.zeros(nb_trajectories)
count_fixation = 0
for trajectory_index in prange(nb_trajectories): #parallelized
#print('trajectory:', trajectory_index)
fixation = simulate_clique(N, M, nb_colonies, migration_rate, s, tmax)
count_fixation += fixation
#fixation_seq[trajectory_index] = fixation
#all_trajectories[trajectory_index, :] = np.sum(trajectories, axis=1)
return count_fixation
def phi(N,s,rho,x):
num = 1 - np.exp(-2*N*s*x / (2-rho))
denom = 1 - np.exp(-2*N*s / (2-rho))
return num/denom
# generating the graph
def run(nb_trajectories, N, nb_colonies, plot=True):
s_range = np.logspace(-4, -1, num=10)
tmax = 50000
migration_rate = 0.1
Ms = np.array([1, N//4, N//2, 3*N//4, N])
rhos = Ms* 1. /N
cmap = mpl.colormaps['plasma']
colors = cmap(np.linspace(0, 1, len(Ms)))
fig, ax = plt.subplots()
fig_data = np.zeros((5, len(Ms)*len(s_range)))
N_tot = N*nb_colonies
for i,M in enumerate(Ms):
print('M:',M)
fig_data[0, i*len(s_range):(i+1)*len(s_range)] = M*np.ones(len(s_range))
color = colors[i]
for j,s in enumerate(s_range):
print('s:',s)
count_fixation = simulate_multiple_trajectories_clique(N, M, nb_colonies, migration_rate, s, tmax, nb_trajectories)
fixation_freq = count_fixation / nb_trajectories
std = np.sqrt(fixation_freq * (1-fixation_freq) / nb_trajectories)
fig_data[1, i*len(s_range) + j] = s
fig_data[2, i*len(s_range) + j] = fixation_freq
fig_data[3, i*len(s_range) + j] = 2*std
fig_data[4, i*len(s_range) + j] = count_fixation
if plot:
ax.errorbar(s_range, fig_data[2,i*len(s_range):(i+1)*len(s_range)], yerr= fig_data[3,i*len(s_range):(i+1)*len(s_range)], label = f"M={M} (update fraction: {round(M/N,2)} )", fmt = 'o', alpha=0.5, color=color)
#ax.plot(s_range, [phi(N_tot,s,M/N,1/N_tot) for s in s_range], label = f"M={M} (update fraction: {round(M/N,2)} )", color= color)
if plot:
ax.set_xscale("log")
ax.set_yscale("log")
ax.set_xlabel('Relative fitness')
ax.set_ylabel('Fixation probability')
ax.legend()
plt.savefig(f'clique_results/clique-graphe_phi-vs-s_n-traj={nb_trajectories}_N={N}_D={nb_colonies}.png')
simulation_parameters = {
'N_tot': N_tot,
'N':N,
'number of colonies':nb_colonies,
'migration rate': migration_rate,
'tmax':tmax,
'nb_trajectories':nb_trajectories,
's_range':(min(s_range), max(s_range))
}
return simulation_parameters, fig_data
if __name__ == "__main__":
#nb_trajectories=10**7
#run(10, plot=False) #compiling the function
N = 10
nb_colonies = 10
nb_trajectories = 5*10000
start_time = time.time()
simulation_parameters, fig_data = run(nb_trajectories, N, nb_colonies)
end_time = time.time()
execution_time = end_time - start_time
print('Execution time:', execution_time)
df = pd.DataFrame({
'M': fig_data[0,:],
's': fig_data[1,:],
'fixation_freq': fig_data[2,:],
'fixation_err': fig_data[3,:],
'count_fixation': fig_data[4,:]
})
df.to_csv(f'clique_results/clique-graphe_phi-vs-s_n-traj={nb_trajectories}_N={N}_D={nb_colonies}_figdata.csv')
with open(f'clique_results/clique-graphe_phi-vs-s_n-traj={nb_trajectories}_N={N}_D={nb_colonies}_parameters.json', "w") as outfile:
json.dump(simulation_parameters, outfile, indent=4)