Skip to content

Commit da51fc9

Browse files
Feat/dlesage/v0.15 (#252)
adding code for release v0.15
1 parent 56a4d2a commit da51fc9

File tree

106 files changed

+5854
-1048
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

106 files changed

+5854
-1048
lines changed

CMakeLists.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ endif()
2323

2424
project(cvcuda
2525
LANGUAGES C CXX
26-
VERSION 0.14.0
26+
VERSION 0.15.0
2727
DESCRIPTION "CUDA-accelerated Computer Vision algorithms"
2828
)
2929

LICENSE.md

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11

2-
[//]: # "SPDX-FileCopyrightText: Copyright (c) 2023-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved."
2+
[//]: # "SPDX-FileCopyrightText: Copyright (c) 2023-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved."
33
[//]: # "SPDX-License-Identifier: Apache-2.0"
44
[//]: # ""
55
[//]: # "Licensed under the Apache License, Version 2.0 (the 'License');"
@@ -102,3 +102,7 @@ To apply the Apache License to your work, attach the following boilerplate notic
102102
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
103103
See the License for the specific language governing permissions and
104104
limitations under the License.
105+
106+
107+
-----------------------------------------------
108+
See [THIRD_PARTY_LICENSES](THIRD_PARTY_LICENSES.md) for licenses of software redistributed as part of CV-CUDA's code or binary packages.

README.md

Lines changed: 30 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -18,13 +18,13 @@
1818

1919
[![License](https://img.shields.io/badge/License-Apache_2.0-yellogreen.svg)](https://opensource.org/licenses/Apache-2.0)
2020

21-
![Version](https://img.shields.io/badge/Version-v0.14.0--beta-blue)
21+
![Version](https://img.shields.io/badge/Version-v0.15.0--beta-blue)
2222

2323
![Platform](https://img.shields.io/badge/Platform-linux--64_%7C_win--64_wsl2%7C_aarch64-gray)
2424

2525
[![CUDA](https://img.shields.io/badge/CUDA-v11.7-%2376B900?logo=nvidia)](https://developer.nvidia.com/cuda-toolkit-archive)
2626
[![GCC](https://img.shields.io/badge/GCC-v11.0-yellow)](https://gcc.gnu.org/gcc-11/changes.html)
27-
[![Python](https://img.shields.io/badge/python-v3.8_%7c_v3.9_%7c_v3.10%7c_v3.11-blue?logo=python)](https://www.python.org/)
27+
[![Python](https://img.shields.io/badge/python-v3.8_%7c_v3.9_%7c_v3.10%7c_v3.11%7c_v3.12%7c_v3.13-blue?logo=python)](https://www.python.org/)
2828
[![CMake](https://img.shields.io/badge/CMake-v3.20-%23008FBA?logo=cmake)](https://cmake.org/)
2929

3030
CV-CUDA is an open-source project that enables building efficient cloud-scale
@@ -44,21 +44,21 @@ To get a local copy up and running follow these steps.
4444

4545
|CV-CUDA Build|Platform|CUDA Version|CUDA Compute Capability|Hardware Architectures|Nvidia Driver|Python Versions|Supported Compilers (build from source)|API compatibility with prebuilt binaries|OS/Linux distributions tested with prebuilt packages|
4646
|-|-|-|-|-|-|-|-|-|-|
47-
|x86_64_cu11|x86_64|11.7 or later|SM7 and later|Volta, Turing, Ampere, Hopper, Ada Lovelace|r525 or later*** |3.8, 3.9, 3.10, 3.11|gcc>=9* <br> gcc>=11**|gcc>=9|ManyLinux2014-compliant, Ubuntu>= 20.04<br>WSL2/Ubuntu>=20.04|
48-
|x86_64_cu12|x86_64|12.2 or later|SM7 and later|Volta, Turing, Ampere, Hopper, Ada Lovelace|r525 or later***|3.8, 3.9, 3.10, 3.11|gcc>=9* <br> gcc>=11**|gcc>=9|ManyLinux2014-compliant, Ubuntu>= 20.04<br>WSL2/Ubuntu>=20.04|
49-
|aarch64_cu12|aarch64 SBSA****|12.2 or later|SM7 and later|ARM SBSA: Volta, Turing, Ampere, Hopper, Ada Lovelace, Grace Hopper|r525 or later***|3.8, 3.9, 3.10, 3.11|gcc>=9* <br> gcc>=11**|gcc>=9|ManyLinux2014-compliant, Ubuntu>= 20.04|
47+
|x86_64_cu11|x86_64|11.7 or later|SM7 and later|Volta, Turing, Ampere, Ada Lovelace, Hopper|r525 or later*** |3.8 - 3.13|gcc>=9* <br> gcc>=11**|gcc>=9|ManyLinux2014-compliant, Ubuntu>= 20.04<br>WSL2/Ubuntu>=20.04|
48+
|x86_64_cu12|x86_64|12.2 or later|SM7 and later|Volta, Turing, Ampere, Ada Lovelace, Hopper|r525 or later***|3.8 - 3.13|gcc>=9* <br> gcc>=11**|gcc>=9|ManyLinux2014-compliant, Ubuntu>= 20.04<br>WSL2/Ubuntu>=20.04|
49+
|aarch64_cu11|aarch64 SBSA****|11.7 or later|SM7 and later|ARM SBSA (incl. Grace): Volta, Turing, Ampere, Ada Lovelace, Hopper|r525 or later***|3.8 - 3.13|gcc>=9* <br> gcc>=11**|gcc>=9|ManyLinux2014-compliant, Ubuntu>= 20.04|
50+
|aarch64_cu12|aarch64 SBSA****|12.2 or later|SM7 and later|ARM SBSA (incl. Grace): Volta, Turing, Ampere, Ada Lovelace, Hopper|r525 or later***|3.8 - 3.13|gcc>=9* <br> gcc>=11**|gcc>=9|ManyLinux2014-compliant, Ubuntu>= 20.04|
5051
|aarch64_cu11|aarch64 Jetson****|11.4|SM7 and later|Jetson AGX Orin|JetPack 5.1|3.8|gcc>=9* <br> gcc>=11**|gcc>=9|Jetson Linux 35.x|
5152
|aarch64_cu12|aarch64 Jetson****|12.2|SM7 and later|Jetson AGX Orin, IGX Orin + Ampere RTX6000, IGX Orin + ADA RTX6000|JetPack 6.0 DP, r535 (IGX OS v0.6)|3.10|gcc>=9* <br> gcc>=11**|gcc>=9|Jetson Linux 36.2<br> IGX OS v0.6|
5253

5354
\* partial build, no test module (see Known Limitations) <br>
5455
\** full build, including test module <br>
5556
\*** [samples][CV-CUDA Samples] require driver r535 or later to run and are only officially supported with CUDA 12. <br>
56-
\**** starting with v0.14, aarch64_cu12 packages (deb, tar.xz or wheels) distributed on Github (release "assets") or Pypi are SBSA-compatible unless noted otherwise. Jetson builds (deb, tar.xz, whl) can be found in explicitly named "Jetson" archives in Github release assets.
57+
\**** starting with v0.14, aarch64 packages (deb, tar.xz or wheels) distributed on Github (release "assets") or Pypi are SBSA-compatible unless noted otherwise. Jetson builds (deb, tar.xz, whl) can be found in explicitly named "Jetson" archives in Github release assets.
5758

5859
### Known limitations and issues
5960

60-
- Starting with v0.14, aarch64_cu12 packages (deb, tar.xz or wheels) distributed on Github (release "assets") and Pypi are the SBSA-compatible ones. Jetson builds (deb, tar.xz, whl) can be found in explicitly named "Jetson" archives in Github release assets.
61-
- We do not provide SBSA-compatible aarch64_cu11 packages yet, this will be addressed in an upcoming release.
61+
- Starting with v0.14, aarch64 packages (deb, tar.xz or wheels) distributed on Github (release "assets") and Pypi are the SBSA-compatible ones. Jetson builds (deb, tar.xz, whl) can be found in explicitly named "Jetson" archives in Github release assets.
6262
- For GCC versions lower than 11.0, C++17 support needs to be enabled when compiling CV-CUDA.
6363
- The C++ test module cannot build with gcc<11 (requires specific C++-20 features). With gcc-9 or gcc-10, please build with option `-DBUILD_TESTS=0`
6464
- [CV-CUDA Samples] require driver r535 or later to run and are only officially supported with CUDA 12.
@@ -83,10 +83,10 @@ Check pypi.org projects for support for your platform of choice, [cvcuda-cu11][c
8383

8484
Use the following command to install the latest available version:
8585
```shell
86-
pip install cvcuda_<cu_ver>
86+
pip install cvcuda-<cu_ver>
8787
```
8888

89-
where <cu_ver> is the desired CUDA version.
89+
where <cu_ver> is the desired CUDA version, 'cu11' or 'cu12'.
9090

9191
Alternatively, download the appropriate .whl file for your computer architecture, Python and CUDA version from the release assets of current CV-CUDA release. Release information of all CV-CUDA releases can be found [here][CV-CUDA GitHub Releases]. Once downloaded, execute the `pip install` command to install the Python wheel. For example:
9292
```shell
@@ -320,6 +320,10 @@ If the script is run from a different location, provide the path to the CV-CUDA
320320

321321
CV-CUDA operates under the [Apache-2.0](LICENSE.md) license.
322322

323+
## Third-party software redistribution
324+
325+
See [THIRD_PARTY_LICENSES](THIRD_PARTY_LICENSES.md) for licenses of software redistributed as part of CV-CUDA's code or binary packages.
326+
323327
## Security
324328

325329
CV-CUDA, as a NVIDIA program, is committed to secure development practices.
@@ -329,9 +333,25 @@ Please read our [Security](SECURITY.md) page to learn more.
329333

330334
CV-CUDA is developed jointly by NVIDIA and ByteDance.
331335

336+
References:
337+
338+
- [Optimizing Microsoft Bing Visual Search with NVIDIA Accelerated Libraries][bing-blog]
339+
- [Accelerating AI Pipelines: Boosting Visual Search Efficiency, GTC 2025][bing-gtc25]
340+
- [Optimize Short-Form Video Processing Toward the Speed of Light, GTC 2025][cosmos-splitting-gtc25]
341+
- [CV-CUDA Increasing Throughput and Reducing Costs for AI-Based Computer Vision with CV-CUDA][increased-throughput-blog]
342+
- [NVIDIA Announces Microsoft, Tencent, Baidu Adopting CV-CUDA for Computer Vision AI][cv-cuda-announcement]
343+
- [CV-CUDA helps Tencent Cloud audio and video PaaS platform achieve full-process GPU acceleration for video enhancement AI][tencent-blog]
344+
332345
[NVIDIA Develop]: https://developer.nvidia.com/
333346
[ByteDance]: https://www.bytedance.com/
334347
[CV-CUDA GitHub Releases]: https://github.com/CVCUDA/CV-CUDA/releases
335348
[CV-CUDA Samples]: https://github.com/CVCUDA/CV-CUDA/blob/main/samples/README.md
336349
[cvcuda-cu11]: https://pypi.org/project/cvcuda-cu11/
337350
[cvcuda-cu12]: https://pypi.org/project/cvcuda-cu12/
351+
352+
[bing-blog]: https://developer.nvidia.com/blog/optimizing-microsoft-bing-visual-search-with-nvidia-accelerated-libraries/
353+
[bing-gtc25]: https://www.nvidia.com/en-us/on-demand/session/gtc25-s71676/
354+
[cosmos-splitting-gtc25]: https://www.nvidia.com/en-us/on-demand/session/gtc25-s73178/
355+
[increased-throughput-blog]: https://developer.nvidia.com/blog/increasing-throughput-and-reducing-costs-for-computer-vision-with-cv-cuda/
356+
[cv-cuda-announcement]: https://blogs.nvidia.com/blog/2023/03/21/cv-cuda-ai-computer-vision/
357+
[tencent-blog]: https://developer.nvidia.com/zh-cn/blog/cv-cuda-high-performance-image-processing/

0 commit comments

Comments
 (0)