|
| 1 | +""" |
| 2 | + This script provides an exmaple to wrap TencentPretrain for generation. |
| 3 | + Given the beginning of a text, language model generates the rest. |
| 4 | +""" |
| 5 | +import sys |
| 6 | +import os |
| 7 | +import argparse |
| 8 | +import torch |
| 9 | +import torch.nn.functional as F |
| 10 | + |
| 11 | +tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) |
| 12 | +sys.path.append(tencentpretrain_dir) |
| 13 | + |
| 14 | +from tencentpretrain.embeddings import * |
| 15 | +from tencentpretrain.encoders import * |
| 16 | +from tencentpretrain.targets import * |
| 17 | +from tencentpretrain.utils.constants import * |
| 18 | +from tencentpretrain.utils import * |
| 19 | +from tencentpretrain.utils.config import load_hyperparam |
| 20 | +from tencentpretrain.model_loader import * |
| 21 | +from tencentpretrain.opts import model_opts, tokenizer_opts |
| 22 | + |
| 23 | + |
| 24 | +class GenerateLm(torch.nn.Module): |
| 25 | + def __init__(self, args): |
| 26 | + super(GenerateLm, self).__init__() |
| 27 | + self.embedding = Embedding(args) |
| 28 | + for embedding_name in args.embedding: |
| 29 | + tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) |
| 30 | + self.embedding.update(tmp_emb, embedding_name) |
| 31 | + self.encoder = str2encoder[args.encoder](args) |
| 32 | + self.target = Target() |
| 33 | + self.target.update(LmTarget(args, len(args.tokenizer.vocab)), "lm") |
| 34 | + |
| 35 | + def forward(self, src, seg): |
| 36 | + emb = self.embedding(src, seg) |
| 37 | + output = self.encoder(emb, seg) |
| 38 | + output = self.target.lm.output_layer(output) |
| 39 | + return output |
| 40 | + |
| 41 | + |
| 42 | +if __name__ == '__main__': |
| 43 | + parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
| 44 | + |
| 45 | + model_opts(parser) |
| 46 | + |
| 47 | + parser.add_argument("--load_model_path", default=None, type=str, |
| 48 | + help="Path of the input model.") |
| 49 | + parser.add_argument("--config_path", type=str, required=True, |
| 50 | + help="Path of the config file.") |
| 51 | + parser.add_argument("--output_model_path", type=str) |
| 52 | + |
| 53 | + tokenizer_opts(parser) |
| 54 | + |
| 55 | + args = parser.parse_args() |
| 56 | + |
| 57 | + args.target = "lm" |
| 58 | + args.batch_size = 1 |
| 59 | + |
| 60 | + args = load_hyperparam(args) |
| 61 | + |
| 62 | + args.tokenizer = str2tokenizer[args.tokenizer](args) |
| 63 | + |
| 64 | + model = GenerateLm(args) |
| 65 | + model = load_model(model, args.load_model_path) |
| 66 | + |
| 67 | + model.half() |
| 68 | + |
| 69 | + torch.save(model.state_dict(), args.output_model_path) |
| 70 | + |
0 commit comments