-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_DRS_yield_check.R
356 lines (256 loc) · 10.3 KB
/
3_DRS_yield_check.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
####################################################################################
# 3 - Explore Data --------------------------------------------------------
# 2019 Livelihoods DRS Data
## Author: Abel Gelman
####################################################################################
library(tidyverse)
# 1 - download data -------------------------------------------------------
# Dataset available in Github: CartONG/R_traning repo
# Store the link to the raw dataset hostes in github
drs_df_raw_link <- "https://raw.githubusercontent.com/CartONG/R_training/main/df19.csv?token=ALMJAS5FZNUMPT2YXW2HM23A4B6Z2"
#download file and store in workspace
df19 <- read_csv(drs_df_raw_link)
summary(df19) # get a first glance at the file
# R "guesses" the column type by analyzing the 1st 1000 rows of each columns. In larger files, like the one we are working with here, this could lead to errros.
# download file again but forcing R to read all columns as character
df19 <- read_csv(drs_df_raw_link,
col_types = cols(.default = "c"))
summary(df19)
colnames(df19)
### 2 - Check quality off agricultural yield
table(df19$Crop1, df19$BE)
# Identify the crop with most observations
crop <- as.data.frame(table(df19$Crop1, df19$BE)) %>%
pivot_wider(names_from = Var2, values_from = Freq) %>%
arrange(desc(Baseline))
#Cassava
### Analyze Cassava
yield1 <- df19 %>%
select(BE, Crop1, Country, Crop1KG, Crop1HA) %>% # select only the columns of interest
filter(BE == "Baseline" & Crop1 == "Cassava") %>% # filter rows by Baseline and crop (cassava)
rename(Crop = Crop1, # rename column names
CropKG = Crop1KG,
CropHA = Crop1HA)
yield1[4:5] <- sapply(yield1[4:5], as.numeric) # convert character columns that have numeric data to numeric
yield2 <- df19 %>% # repeat previous steps with the 2nd main crop
select(BE, Crop2, Country, Crop2KG, Crop2HA) %>%
filter(BE == "Baseline" & Crop2 == "Cassava") %>%
rename(Crop = Crop2,
CropKG = Crop2KG,
CropHA = Crop2HA)
yield2[4:5] <- sapply(yield2[4:5], as.numeric)
yield <- bind_rows(yield1, yield2) # join 2 crop objects into one data frame
yield_all <- yield %>%
mutate(Yield = CropKG/CropHA, # crate new column calculating yield
Check = Yield < 350) # set a threshold for yield under which we can assume the data entry is problematic
yield_all$Check <- as.factor(yield_all$Check)
# Plot cassava yield distribution in an histogram highlighting problematic entries
library(hrbrthemes)
yield_all_g <- ggplot(yield_all, aes(x=Yield, fill = Check))+
geom_histogram(binwidth = 350)+
labs(title ="Cassava \nYield (To/Ha) Per Seasson Per Sampled Beneficiary",
caption = "Source: UNHCR DRS 2019 livelihoods \nHistogram bin width: 350")+
labs(x = "Cassava yield (To/Ha) per season",
y = "# of sampled beneficairies")+
scale_x_continuous(label=function(x){
x <- x/1000
return(paste(x, "To"))})+
theme_ipsum()+
scale_fill_manual(values = c("#0072BC","red4"))
### Create a function
# Identify crops by country
crop_check <- function(drs_df, base_end = c("Baseline", "Endilne"), Country_ = "All"){
require(tidyverse)
'
1 - Filter by country & EL/BL
2 - Extract vector of crops
a - vector crop 1
b - vector crop2
c - join vectors
3 - output unique values
'
base_end <- match.arg(base_end)
if (Country_ == "All")
temp <- drs_df %>%
filter(BE == base_end)
else
temp <- drs_df %>%
filter(BE == base_end & Country == Country_)
c1 <- unique(temp$Crop1)
c2 <- unique(temp$Crop2)
c <- unique(c(c1, c2))
c <- c[!is.na(c)]
c <- c[c != 0]
return(c)
}
# Graph problematic data entries
crop_yield <- function(df_drs, Crop, base_end = c("Baseline", "Endline"), Country = "All", Threshold = 100, Bin_width = 100){
base_end <- match.arg(base_end)
#crop 1
if (Country == "All")
t1 <- df_drs %>%
select(BE, Crop1, Country, Crop1KG, Crop1HA) %>%
filter(BE == base_end & Crop1 == Crop)
else
t1 <- df_drs %>%
select(BE, Crop1, Country, Crop1KG, Crop1HA) %>%
filter(BE == base_end & Crop1 == Crop & Country == Country)
t1 <- t1 %>%
rename(Crop = Crop1,
CropKG = Crop1KG,
CropHA = Crop1HA)
#Crop2
if (Country == "All")
t2 <- df_drs %>%
select(BE, Crop2, Country, Crop2KG, Crop2HA) %>%
filter(BE == base_end & Crop2 == Crop)
else
t2 <- df_drs %>%
select(BE, Crop2, Country, Crop2KG, Crop2HA) %>%
filter(BE == base_end & Crop2 == Crop & Country == Country)
t2 <- t2 %>%
rename(Crop = Crop2,
CropKG = Crop2KG,
CropHA = Crop2HA)
# combine crop lists
t <- bind_rows(t1, t2)
t$CropKG <- as.numeric(t$CropKG)
t$CropHA <- as.numeric(t$CropHA)
t <- t %>%
mutate(Yield = CropKG / CropHA,
Check = Yield < Threshold)
t_graph <- ggplot(t, aes(x=Yield)) +
geom_histogram(data = subset(t, Check == TRUE), binwidth = Bin_width, fill = "red4")+
geom_histogram(data = subset(yield_all, Check == FALSE), binwidth = Bin_width, fill = "#0072BC")+
labs(title = paste(Crop, "Yield (Kg/Ha) Per Seasson Per Sampled Beneficiary"),
caption = "Source: UNHCR DRS 2019 livelihoods")+
xlab(paste(Crop,"yield (Kg/Ha) per season"))+
ylab("# of sampled beneficairies")+
scale_x_continuous(label=function(x){return(paste(x, "kg"))})
return(t_graph)
}
# check Burnika Faso cops
crop_check(df19,
"Baseline",
"Burkina Faso")
# plot the crops we are intersted in
crop_yield(df19, "Pumpkins, squash and gourds",
"Baseline", "Angola",
Threshold = 350 ,
Bin_width = 350)
###### Plot each crop per country
for (c in 1: length(temp_x)){
x <- temp_x[c]
y <- crop_yield(df19, x, "Baseline", "Burkina Faso", Threshold = 200, Bin_width = 200)
print(y)
}
###### Or plot all in the same page
### dataset with crops by country
y1 <- df19 %>%
select(BE, Crop1, Country, Crop1KG, Crop1HA) %>%
filter(BE == "Baseline" & !is.na(Crop1)) %>%
rename(Crop = Crop1,
CropKG = Crop1KG,
CropHA = Crop1HA)
y2 <- df19 %>%
select(BE, Crop2, Country, Crop2KG, Crop2HA) %>%
filter(BE == "Baseline" & !is.na(Crop2)) %>%
rename(Crop = Crop2,
CropKG = Crop2KG,
CropHA = Crop2HA)
y_ttl <- bind_rows(y1, y2)
y_ttl$CropKG <- as.numeric(y_ttl$CropKG)
y_ttl$CropHA <- as.numeric(y_ttl$CropHA)
y_ttl <- y_ttl %>%
mutate(Yield = CropKG/CropHA,
Check = Yield < 300)
y_ttlG <- y_ttl %>%
filter(Country == "Burkina Faso" & Crop != "0") %>%
filter(Yield < 1500)
y_ttlG <- ggplot(y_ttlG, aes(x=Yield))+
geom_histogram(data = subset(y_ttlG, Check==TRUE), binwidth = 100, fill="red4")+
geom_histogram(data = subset(y_ttlG, Check==FALSE), binwidth = 100, fill="#0072BC")+
labs(title ="Yield (Kg/Ha) Per Seasson Per Sampled Beneficiary",
caption = "Source: UNHCR DRS 2019 livelihoods")+
xlab("yield (Kg/Ha) per season")+
ylab("# of sampled beneficairies")+
scale_x_continuous(label=function(x){return(paste(x, "kg"))})+
coord_flip()+
facet_wrap(~Crop,
ncol = 2)
y_ttlG
## filter out problematic yield entries
fiterDR <- df19
# select columns (BE, Country, FamilySize, Crop1, Crop2, Crop1KG, O1IncomeFarming)
# Transform the following variables to numeric: FamilySize, Crop1KG, Crop1HA
# create variable Yield (Crop1KG / Crop1HA)
# create variable check with threshold of problematic yield values (eg: 150Kg) (play around with the threshold)
# how may row we have
# if enough:
# Compare yield change btw baseline and endline
# compare yield change by Country (only country with enough data if any)
# SCATTER PLOT: x= yield, y=FamilySize, colored by: O1IncomeFarming
df19$Crop1KG <- as.numeric(df19$Crop1KG)
df19$Crop1HA <- as.numeric(df19$Crop1HA)
df19$FamilySize <- as.numeric(df19$FamilySize)
rm(dfYield2)
dfYield2 <- df19 %>%
select(BE, Country, FamilySize, Crop1, Crop1HA, Crop1KG, O1IncomeFarming, ArrivalYear) %>%
mutate(Yield = round(Crop1KG / Crop1HA, 0),
Check = Yield < 150) %>%
filter(Check==FALSE) %>%
filter (Crop1=="Cassava"|Crop1=="Maize"|Crop1=="Groundnuts, with shell") %>%
filter(Yield != Inf) %>%
group_by(BE,Crop1) %>%
summarise(avgYield = mean(Yield)) %>%
ungroup() %>%
arrange(Crop1)
dfYield2_graph <-dfYield2 %>%
ggplot(aes(x = BE, y = avgYield)) +
geom_bar(position="dodge", stat="identity") +
facet_wrap(~Crop1)
dfYield3 <- df19 %>%
select(BE, Country, FamilySize, Crop1, Crop1HA, Crop1KG, O1IncomeFarming, ArrivalYear) %>%
mutate(Yield = round(Crop1KG / Crop1HA, 0),
Check = Yield < 150) %>%
filter(Check==FALSE) %>%
filter (Crop1=="Cassava"|Crop1=="Maize"|Crop1=="Groundnuts, with shell") %>%
filter(Yield != Inf)
dfYield3_graph <- dfYield3 %>%
filter(Yield < 10000) %>%
ggplot(aes(x = FamilySize, y = Yield, color= Crop1))+
geom_point(alpha = 0.4)+
geom_jitter(width = 5, height = 5)+
geom_rug(col="brown",alpha=0.1, size=1)+
facet_wrap(~Crop1)
cor(dfYield3$FamilySize, dfYield3$Yield)
dfYield3_graph2 <- dfYield3 %>%
filter(Yield < 10000) %>%
ggplot(aes(x = FamilySize, y = Yield, color= O1IncomeFarming))+
geom_point(alpha = 0.4)+
geom_jitter(width = 5, height = 5)+
geom_rug(col="brown",alpha=0.1, size=1)
dfYield3_graph3 <- dfYield3 %>%
filter(Yield < 10000 & Crop1 == "Cassava") %>%
ggplot(aes(x = FamilySize, y = Yield, color= Crop1))+
geom_point(alpha = 0.4)+
geom_jitter(width = 5, height = 5)+
geom_rug(col="brown",alpha=0.1, size=1)
dfYield3_graph4 <- dfYield3 %>%
filter(Yield < 10000 & Crop1 == "Maize") %>%
ggplot(aes(x = FamilySize, y = Yield, color= Crop1))+
geom_point(alpha = 0.4)+
geom_jitter(width = 5, height = 5)+
geom_rug(col="brown",alpha=0.1, size=1)
dfYield3_graph5 <- dfYield3 %>%
filter(Yield < 10000 & !is.na(ArrivalYear) & Crop1 == "Cassava") %>%
ggplot(aes(x = ArrivalYear, y = Yield, color= Crop1))+
geom_point(alpha = 0.4)+
geom_jitter(width = 2, height = 2)+
theme(axis.text.x = element_text(angle = 45))
dfYield3_graph5_cor <- dfYield3 %>%
filter(Yield < 10000 & !is.na(ArrivalYear) & Crop1 == "Cassava")
dfYield3_graph5_cor$ArrivalYear <- as.numeric(dfYield3_graph5_cor$ArrivalYear)
cor(dfYield3_graph5_cor$ArrivalYear, dfYield3_graph5_cor$Yield)
lm1 <- lm(ArrivalYear ~ Yield, dfYield3_graph5_cor)
summary(lm1)