-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_SMID.py
executable file
·253 lines (209 loc) · 9.42 KB
/
demo_SMID.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Demo code
import os
import time
import random
import numpy as np
import argparse
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.multiprocessing as mp
import torch.distributed as dist
import spconv.pytorch as spconv
from tensorboardX import SummaryWriter
from util import config
from util.common_util import AverageMeter, intersectionAndUnionGPU, find_free_port
from Demo.demo_util import collation_fn_voxelmean_tta
from util.logger import get_logger
from util.Mid import Mid
from model.backbone import Semantic as Model
def get_parser():
parser = argparse.ArgumentParser(description='PyTorch Point Cloud Semantic Segmentation')
parser.add_argument('--config', type=str, default='config/demo/Mid_demo.yaml', help='config file')
args = parser.parse_args()
assert args.config is not None
cfg = config.load_cfg_from_cfg_file(args.config)
return cfg
def worker_init_fn(worker_id):
random.seed(args.manual_seed + worker_id)
def main_process():
return not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % args.ngpus_per_node == 0)
def main():
args = get_parser()
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
if args.manual_seed is not None:
random.seed(args.manual_seed)
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
cudnn.benchmark = False
cudnn.deterministic = True
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
args.ngpus_per_node = len(args.train_gpu)
if len(args.train_gpu) == 1:
args.sync_bn = False
args.distributed = False
args.multiprocessing_distributed = False
if args.multiprocessing_distributed:
port = find_free_port()
args.dist_url = f"tcp://127.0.0.1:{port}"
args.world_size = args.ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args.ngpus_per_node, args))
else:
main_worker(args.train_gpu, args.ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, argss):
global args, best_iou
args, best_iou = argss, 0
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank)
model = Model(input_c=args.input_c,
m=args.m,
classes=args.classes,
block_reps=args.block_reps,
layers=args.layers,
focal_r=args.focal_r,
focal_th=args.focal_th,
focal_h=args.focal_h,
drop_path_rate=args.drop_path_rate,
grad_checkpoint_layers=args.grad_checkpoint_layers,
unet_layers=args.unet_layers,
)
if main_process():
global logger, writer
logger = get_logger(args.save_path)
writer = SummaryWriter(args.save_path)
logger.info(args)
if args.distributed:
torch.cuda.set_device(gpu)
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
if args.sync_bn:
if main_process():
logger.info("use SyncBN")
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
else:
model = torch.nn.DataParallel(model.cuda())
if main_process():
logger.info("=> creating model ...")
logger.info("Classes: {}".format(args.classes))
logger.info(model)
if args.get("max_grad_norm", None):
logger.info("args.max_grad_norm = {}".format(args.max_grad_norm))
if args.weight:
if os.path.isfile(args.weight):
if main_process():
logger.info("=> loading weight '{}'".format(args.weight))
state_dict = torch.load(args.weight)
model.load_state_dict(state_dict, strict=True)
if main_process():
logger.info("=> loaded weight '{}'".format(args.weight))
else:
logger.info("=> no weight found at '{}'".format(args.weight))
args.use_tta = getattr(args, "use_tta", False)
if args.data_name == 'Mid360':
val_data = Mid(data_path=args.data_root,
voxel_size=args.voxel_size,
split='val',
rotate_aug=args.use_tta,
flip_aug=args.use_tta,
scale_aug=args.use_tta,
transform_aug=args.use_tta,
xyz_norm=args.xyz_norm,
pc_range=args.get("pc_range", None),
use_tta=args.use_tta,
vote_num=args.vote_num
)
else:
raise ValueError("The dataset {} is not supported.".format(args.data_name))
if main_process():
logger.info("demo_data samples: '{}'".format(len(val_data)))
if args.distributed:
val_sampler = torch.utils.data.distributed.DistributedSampler(val_data, shuffle=False)
else:
val_sampler = None
if getattr(args, "use_tta", False):
val_loader = torch.utils.data.DataLoader(val_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
sampler=val_sampler,
collate_fn=collation_fn_voxelmean_tta
)
validate_tta(val_loader, model)
exit()
def validate_tta(val_loader, model):
if main_process():
logger.info('>>>>>>>>>>>>>>>> Quick Demo >>>>>>>>>>>>>>>>')
batch_time = AverageMeter()
data_time = AverageMeter()
intersection_meter = AverageMeter()
union_meter = AverageMeter()
target_meter = AverageMeter()
torch.cuda.empty_cache()
model.eval()
end = time.time()
for i, batch_data_list in enumerate(val_loader):
data_time.update(time.time() - end)
with torch.no_grad():
output = 0.0
for batch_data in batch_data_list:
(coord, xyz, feat, target, offset, inds_reconstruct) = batch_data
inds_reconstruct = inds_reconstruct.cuda(non_blocking=True)
offset_ = offset.clone()
offset_[1:] = offset_[1:] - offset_[:-1]
batch = torch.cat([torch.tensor([ii]*o) for ii,o in enumerate(offset_)], 0).long()
coord = torch.cat([batch.unsqueeze(-1), coord], -1)
spatial_shape = np.clip((coord.max(0)[0][1:] + 1).numpy(), 128, None)
coord, xyz, feat, target, offset = coord.cuda(non_blocking=True), xyz.cuda(non_blocking=True), feat.cuda(non_blocking=True), target.cuda(non_blocking=True), offset.cuda(non_blocking=True)
batch = batch.cuda(non_blocking=True)
sinput = spconv.SparseConvTensor(feat, coord.int(), spatial_shape, args.batch_size)
assert batch.shape[0] == feat.shape[0]
output_i = model(sinput, xyz, batch)
output_i = F.softmax(output_i[inds_reconstruct, :], -1)
output = output + output_i
output = output / len(batch_data_list)
output = output.max(1)[1]
intersection, union, target = intersectionAndUnionGPU(output, target, args.classes, args.ignore_label)
if args.multiprocessing_distributed:
dist.all_reduce(intersection), dist.all_reduce(union), dist.all_reduce(target)
intersection, union, target = intersection.cpu().numpy(), union.cpu().numpy(), target.cpu().numpy()
intersection_meter.update(intersection), union_meter.update(union), target_meter.update(target)
accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10)
batch_time.update(time.time() - end)
end = time.time()
if (i + 1) % args.print_freq == 0 and main_process():
logger.info('Test: [{}/{}] '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Accuracy {accuracy:.4f}.'.format(i + 1, len(val_loader),
data_time=data_time,
batch_time=batch_time,
accuracy=accuracy))
iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
accuracy_class = intersection_meter.sum / (target_meter.sum + 1e-10)
mIoU = np.mean(iou_class)
mAcc = np.mean(accuracy_class)
allAcc = sum(intersection_meter.sum) / (sum(target_meter.sum) + 1e-10)
if main_process():
logger.info('Val result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.'.format(mIoU, mAcc, allAcc))
for i in range(args.classes):
logger.info('Class_{} Result: iou/accuracy {:.4f}/{:.4f}.'.format(i, iou_class[i], accuracy_class[i]))
logger.info('<<<<<<<<<<<<<<<<< Demo ends <<<<<<<<<<<<<<<<<')
return mIoU, mAcc, allAcc
if __name__ == '__main__':
import gc
gc.collect()
main()