-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmodel_zigma.py
1240 lines (1063 loc) · 41.9 KB
/
model_zigma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import copy
import torch
import torch.nn as nn
import numpy as np
import math
from timm.models.vision_transformer import PatchEmbed, Mlp
import math
from functools import partial
from torch import nn, einsum
from einops import rearrange, repeat
from inspect import isfunction
from torch import Tensor
from typing import Optional
import einops
from utils.utils_zigzag import reverse_permut_np, zigzag_path, hilbert_path
import torch
import torch.nn as nn
import numpy as np
from functools import partial
from timm.models.vision_transformer import Mlp
from dis_mamba.mamba_ssm.modules.mamba_simple import Mamba
from dis_mamba.mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
ATTENTION_MODE = "flash"
else:
try:
import xformers
import xformers.ops
ATTENTION_MODE = "xformers"
except:
ATTENTION_MODE = "math"
print(f"attention mode is {ATTENTION_MODE}")
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def t2i_modulate(x, shift, scale):
return x * (1 + scale) + shift
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class PatchEmbed_Video(PatchEmbed):
"""2D Image to Patch Embedding"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x):
B, T, C, H, W = x.shape
x = rearrange(x, "b t c h w -> (b t) c h w")
x = super().forward(x)
# (b t) n c
x = rearrange(x, "(b t) n c -> b (t n) c", t=T)
return x
def exists(val):
return val is not None
def uniq(arr):
return {el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head**-0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
)
def forward(self, x, text, mask=None):
B, L, C = x.shape
q = self.to_q(x)
# text = default(text, x)
k = self.to_k(text)
v = self.to_v(text)
q, k, v = map(
lambda t: rearrange(t, "B L (H D) -> B H L D", H=self.heads), (q, k, v)
) # B H L D
if ATTENTION_MODE == "flash":
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = einops.rearrange(x, "B H L D -> B L (H D)")
elif ATTENTION_MODE == "xformers":
x = xformers.ops.memory_efficient_attention(q, k, v)
x = einops.rearrange(x, "B L H D -> B L (H D)", H=self.heads)
elif ATTENTION_MODE == "math":
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, L, C)
else:
raise NotImplemented
return self.to_out(x)
def drop_path(
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
def extra_repr(self):
return f"drop_prob={round(self.drop_prob,3):0.3f}"
class CaptionEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(
self,
in_channels,
hidden_size,
uncond_prob,
act_layer=nn.GELU(approximate="tanh"),
token_num=120,
):
super().__init__()
self.y_proj = Mlp(
in_features=in_channels,
hidden_features=hidden_size,
out_features=hidden_size,
act_layer=act_layer,
drop=0,
)
self.register_buffer(
"y_embedding",
nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5),
)
self.uncond_prob = uncond_prob
def token_drop(self, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return caption
def forward(self, caption, train, force_drop_ids=None):
if train:
assert (
caption.shape[1:] == self.y_embedding.shape
), f"{caption.shape} is not {self.y_embedding.shape}"
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
caption = self.token_drop(caption, force_drop_ids)
caption = self.y_proj(caption)
return caption
#################################################################################
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, dtype, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.dtype = dtype
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, dtype, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=dtype) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(
t, self.frequency_embedding_size, dtype=self.dtype
)
t_emb = self.mlp(t_freq.to(dtype=self.dtype))
return t_emb
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(
num_classes + use_cfg_embedding, hidden_size
)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = (
torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
)
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels, cond=False):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(
hidden_size, patch_size * patch_size * out_channels, bias=True
)
if cond:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c=None):
if c is not None:
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
else:
x = self.norm_final(x)
x = self.linear(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
mixer_cls,
has_text=False,
norm_cls=nn.LayerNorm,
fused_add_norm=False,
residual_in_fp32=False,
drop_path=0.0,
skip=False,
):
"""
Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection"
This Block has a slightly different structure compared to a regular
prenorm Transformer block.
The standard block is: LN -> MHA/MLP -> Add.
[Ref: https://arxiv.org/abs/2002.04745]
Here we have: Add -> LN -> Mixer, returning both
the hidden_states (output of the mixer) and the residual.
This is purely for performance reasons, as we can fuse add and LayerNorm.
The residual needs to be provided (except for the very first block).
"""
super().__init__()
self.residual_in_fp32 = residual_in_fp32
self.fused_add_norm = fused_add_norm
self.has_text = has_text
self.mixer = mixer_cls(dim)
self.norm = norm_cls(dim)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
if self.fused_add_norm:
assert RMSNorm is not None, "RMSNorm import fails"
assert isinstance(
self.norm, (nn.LayerNorm, RMSNorm)
), "Only LayerNorm and RMSNorm are supported for fused_add_norm"
self.skip_linear = nn.Linear(2 * dim, dim) if skip else None
adaln_num = 3 * 2 if self.has_text else 3
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(dim, adaln_num * dim, bias=True)
)
if self.has_text:
self.msa = CrossAttention(
query_dim=dim, context_dim=dim, heads=8, dim_head=64, dropout=0.0
)
self.norm_msa = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(
self,
x: Tensor,
residual: Optional[Tensor] = None,
c=None,
text=None,
inference_params=None,
skip=None,
):
r"""Pass the input through the encoder layer.
Args:
hidden_states: the sequence to the encoder layer (required).
residual: hidden_states = Mixer(LN(residual))
"""
if self.skip_linear is not None:
x = self.skip_linear(torch.cat([x, skip], dim=-1))
if not self.fused_add_norm:
if residual is None:
residual = x
else:
residual = residual + self.drop_path(x)
x = self.norm(residual.to(dtype=self.norm.weight.dtype))
if self.residual_in_fp32:
residual = residual.to(torch.float32)
else:
fused_add_norm_fn = (
rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn
)
if residual is None:
x, residual = fused_add_norm_fn(
x,
self.norm.weight,
self.norm.bias,
residual=residual,
prenorm=True,
residual_in_fp32=self.residual_in_fp32,
eps=self.norm.eps,
)
else:
x, residual = fused_add_norm_fn(
self.drop_path(x),
self.norm.weight,
self.norm.bias,
residual=residual,
prenorm=True,
residual_in_fp32=self.residual_in_fp32,
eps=self.norm.eps,
)
if not self.has_text:
shift_mba, scale_mba, gate_mba = self.adaLN_modulation(c).chunk(3, dim=1)
x = x + gate_mba.unsqueeze(1) * self.mixer(
modulate(x, shift_mba, scale_mba),
inference_params=inference_params,
)
else:
shift_mba, scale_mba, gate_mba, shift_msa, scale_msa, gate_msa = (
self.adaLN_modulation(c).chunk(6, dim=1)
)
x = x + gate_mba.unsqueeze(1) * self.mixer(
modulate(x, shift_mba, scale_mba),
inference_params=inference_params,
)
x = x + gate_msa.unsqueeze(1) * self.msa(
modulate(self.norm_msa(x), shift_msa, scale_msa),
text=text,
mask=None, #
)
return x, residual
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return self.mixer.allocate_inference_cache(
batch_size, max_seqlen, dtype=dtype, **kwargs
)
def create_block(
d_model,
ssm_cfg=None,
has_text=False,
norm_epsilon=1e-5,
drop_path=0.0,
rms_norm=False,
residual_in_fp32=False,
fused_add_norm=False,
skip=False,
layer_idx=None,
device=None,
dtype=None,
scan_type="none",
**block_kwargs,
):
if ssm_cfg is None:
ssm_cfg = {}
factory_kwargs = {"device": device, "dtype": dtype}
mixer_cls = partial(
Mamba,
layer_idx=layer_idx,
scan_type=scan_type,
**ssm_cfg,
**block_kwargs,
**factory_kwargs,
)
norm_cls = partial(
nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs
)
block = Block(
d_model,
mixer_cls,
has_text=has_text,
norm_cls=norm_cls,
drop_path=drop_path,
fused_add_norm=fused_add_norm,
residual_in_fp32=residual_in_fp32,
skip=skip,
)
block.layer_idx = layer_idx
return block
def _init_weights(
module,
n_layer,
initializer_range=0.02, # Now only used for embedding layer.
rescale_prenorm_residual=True,
n_residuals_per_layer=1, # Change to 2 if we have MLP
):
if isinstance(module, nn.Linear):
if module.bias is not None:
if not getattr(module.bias, "_no_reinit", False):
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["out_proj.weight", "fc2.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
with torch.no_grad():
p /= math.sqrt(n_residuals_per_layer * n_layer)
class ZigMa(nn.Module):
"""
A DiT-styled Mamba model with ZigZag scan.
"""
def __init__(
self,
in_channels: int,
embed_dim: int,
depth: int,
img_dim: int,
patch_size: int = 1,
has_text: bool = False,
num_classes=-1,
drop_path_rate=0.1,
n_context_token: int = 0,
d_context: int = 0,
ssm_cfg=None,
norm_epsilon: float = 1e-5,
rms_norm: bool = True,
fused_add_norm=True,
residual_in_fp32=True,
initializer_cfg=None,
scan_type="v2",
video_frames=0,
tpe=False, # apply temporal positional encoding for video-related task
device="cuda",
use_pe=0,
use_jit=True,
m_init=True,
use_checkpoint=False,
dtype=torch.float32,
):
# assert num_classes == -1, "num_classes should be -1"
# assert n_context_token == 0, "n_context_token should be 0"
self.factory_kwargs = factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels
self.patch_size = patch_size
self.embed_dim = embed_dim
self.tpe = tpe
self.residual_in_fp32 = residual_in_fp32
self.fused_add_norm = fused_add_norm
self.video_frames = video_frames
self.use_pe = use_pe
num_patches = (img_dim // patch_size) ** 2
self.use_checkpoint = use_checkpoint
print(
"use_checkpoint",
use_checkpoint,
"use_pe",
use_pe,
"use tpe",
tpe,
"num_patches",
num_patches,
"use_jit",
use_jit,
)
if video_frames == 0:
self.x_embedder = (
PatchEmbed(
img_dim, patch_size, self.in_channels, self.embed_dim, bias=True
)
.to(device)
.to(dtype)
)
else:
self.x_embedder = (
PatchEmbed_Video(
img_dim, patch_size, self.in_channels, self.embed_dim, bias=True
)
.to(device)
.to(dtype)
)
self.t_embedder = (
TimestepEmbedder(self.embed_dim, dtype=dtype).to(device).to(dtype)
)
if video_frames == 0:
num_patches_4pe = num_patches
elif video_frames > 0:
num_patches_4pe = num_patches * video_frames
else:
raise ValueError("video_frames should be >= 0")
if self.use_pe == 1: # fixed sin-cos embedding
# Will use fixed sin-cos embedding:
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches_4pe, embed_dim, device=device, dtype=dtype),
requires_grad=False,
)
elif self.use_pe == 2: # learnable embedding
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches_4pe, embed_dim, device=device, dtype=dtype)
)
elif self.use_pe == 3: # every layer has it's own PE
self.pos_embed_list = [
nn.Parameter(
torch.zeros(
1, num_patches_4pe, embed_dim, device=device, dtype=dtype
)
)
] * depth
elif self.use_pe == 0:
pass
else:
raise ValueError("use_pe should be 0, 1 or 2")
if self.tpe:
self.temporal_pos_embedding = nn.Parameter(
torch.zeros(1, video_frames, embed_dim, device=device, dtype=dtype)
)
self.n_layer = depth
self.has_text = has_text
self.num_classes = num_classes
print("has_text", has_text)
if has_text:
self.y_embedder = nn.Linear(d_context, embed_dim).to(device).to(dtype)
print("has_text=", num_classes)
elif num_classes > 0:
self.y_embedder = (
LabelEmbedder(num_classes, hidden_size=embed_dim, dropout_prob=0.0)
.to(device)
.to(dtype)
)
print("num_classes=", num_classes)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, self.n_layer)
] # stochastic depth decay rule
inter_dpr = [0.0] + dpr
self.drop_path = (
DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
)
self.extras = 0
block_kwargs = {"use_jit": use_jit}
print("scan_type", scan_type)
patch_side_len = int(math.sqrt(num_patches))
if (
scan_type.startswith("zigzagN")
or scan_type.startswith("hilbertN")
or scan_type.startswith("randomN")
or scan_type.startswith("parallelN")
):
if scan_type.startswith("zigzagN") or scan_type.startswith("parallelN"):
_zz_paths = zigzag_path(N=patch_side_len)
if scan_type.startswith("zigzagN"):
zigzag_num = int(scan_type.replace("zigzagN", ""))
zz_paths = _zz_paths[:zigzag_num]
assert (
len(zz_paths) == zigzag_num
), f"{len(zz_paths)} != {zigzag_num}"
elif scan_type.startswith("parallelN"):
zz_paths = _zz_paths[:8]
else:
raise ValueError("scan_type should be xx")
elif scan_type.startswith("hilbertN"):
_zz_paths = hilbert_path(N=patch_side_len)
if scan_type.startswith("hilbertN"):
zigzag_num = int(scan_type.replace("hilbertN", ""))
zz_paths = _zz_paths[:zigzag_num]
assert (
len(zz_paths) == zigzag_num
), f"{len(zz_paths)} != {zigzag_num}"
else:
raise ValueError("scan_type should be xx")
elif scan_type.startswith("randomN"):
zigzag_num = int(scan_type.replace("randomN", ""))
zz_paths = []
for _ddd in range(zigzag_num):
_tmp = np.array([_ for _ in range(patch_side_len**2)])
np.random.shuffle(_tmp)
print(_tmp)
zz_paths.append(_tmp)
else:
raise ValueError(f"scan_type {scan_type} doenst match")
print("zigzag_num", len(zz_paths))
#############
zz_paths_rev = [reverse_permut_np(_) for _ in zz_paths]
zz_paths = zz_paths * depth
zz_paths_rev = zz_paths_rev * depth
zz_paths = [torch.from_numpy(_).to(device) for _ in zz_paths]
zz_paths_rev = [torch.from_numpy(_).to(device) for _ in zz_paths_rev]
assert len(zz_paths) == len(
zz_paths_rev
), f"{len(zz_paths)} != {len(zz_paths_rev)}"
block_kwargs["zigzag_paths"] = zz_paths
block_kwargs["zigzag_paths_reverse"] = zz_paths_rev
block_kwargs["extras"] = self.extras
print("zigzag_paths length", len(zz_paths))
for iii, _ in enumerate(zz_paths):
print(f"zigzag_paths {iii}", _[:20])
elif scan_type.startswith("zzvideo_"):
st_order = list(
scan_type.replace("zzvideo_", "")
) # if st, then ststst; if sst then sstsstsstsst
assert len(set(st_order)) == 2
st_order = st_order * depth
print("st_order", st_order)
zz_paths = zigzag_path(N=patch_side_len)
zz_paths_rev = [reverse_permut_np(_) for _ in zz_paths]
####
zz_paths = [torch.from_numpy(_).to(device) for _ in zz_paths]
zz_paths_rev = [torch.from_numpy(_).to(device) for _ in zz_paths_rev]
zz_paths = zz_paths * depth
zz_paths_rev = zz_paths_rev * depth
assert len(zz_paths) == len(
zz_paths_rev
), f"{len(zz_paths)} != {len(zz_paths_rev)}"
time_p = torch.from_numpy(np.array([_ for _ in range(video_frames)])).to(
device
)
time_n = torch.from_numpy(
np.array([video_frames - 1 - _ for _ in range(video_frames)])
).to(device)
time_zz_paths = [time_p, time_n] * depth
time_zz_paths_reverse = [time_n, time_p] * depth
block_kwargs["zigzag_paths"] = []
block_kwargs["zigzag_paths_reverse"] = []
for _d in range(depth):
if st_order[_d] == "s":
block_kwargs["zigzag_paths"].append(zz_paths.pop(0))
block_kwargs["zigzag_paths_reverse"].append(zz_paths_rev.pop(0))
elif st_order[_d] == "t":
block_kwargs["zigzag_paths"].append(time_zz_paths.pop(0))
block_kwargs["zigzag_paths_reverse"].append(
time_zz_paths_reverse.pop(0)
)
else:
raise ValueError("st_order should be s or t")
block_kwargs["extras"] = self.extras
block_kwargs["video_frames"] = video_frames
block_kwargs["st_order"] = st_order
print("zigzag_paths length", len(zz_paths))
elif scan_type == "v2":
pass # no zigzag
else:
raise ValueError("scan_type doesn't match")
self.blocks = nn.ModuleList(
[
create_block(
embed_dim,
has_text=has_text,
ssm_cfg=ssm_cfg,
norm_epsilon=norm_epsilon,
rms_norm=rms_norm,
residual_in_fp32=residual_in_fp32,
fused_add_norm=fused_add_norm,
layer_idx=i,
scan_type=scan_type,
drop_path=inter_dpr[i],
**block_kwargs,
**factory_kwargs,
)
.to(device)
.to(dtype)
for i in range(self.n_layer)
]
)
self.final_layer = (
FinalLayer(self.embed_dim, patch_size, self.out_channels)
.to(device)
.to(dtype)
)
# output head
self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)(
embed_dim, eps=norm_epsilon, **factory_kwargs
)
self.initialize_weights()
self.m_init = m_init
if m_init:
self.apply(
partial(
_init_weights,
n_layer=depth,
**(initializer_cfg if initializer_cfg is not None else {}),
)
)
print("m_init", m_init)
def initialize_weights(self):
if self.use_pe == 1:
# Initialize (and freeze) pos_embed by sin-cos embedding:
pos_embed = get_2d_sincos_pos_embed(
self.pos_embed.shape[-1], int(self.x_embedder.num_patches**0.5)
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# if self.has_text:
# Initialize label embedding table:
# nn.init.normal_(self.y_embedder.y_embedding, std=0.02)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
try:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
except:
pass
def unpatchify(self, x):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = w = int(x.shape[1] ** 0.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum("nhwpqc->nchpwq", x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
return imgs
def unpatchify_video(self, x, video_frames):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = w = int((x.shape[1] // video_frames) ** 0.5)
assert h * w * video_frames == x.shape[1]
x = x.reshape(shape=(x.shape[0], video_frames, h, w, p, p, c))
x = torch.einsum("nthwpqc->ntchpwq", x)
imgs = x.reshape(shape=(x.shape[0], video_frames, c, h * p, h * p))
return imgs
def ckpt_wrapper(self, module):
def ckpt_forward(*inputs):
outputs = module(*inputs)
return outputs
return ckpt_forward
def forward(
self,
hidden_states,
t,
y=None,
):
"""
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images),
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
hidden_states = self.x_embedder(
hidden_states
) # (N, T, D), where T = H * W / patch_size ** 2, if video_frames>0, T = H * W * video_frames / patch_size ** 2
_B, _T, _D = hidden_states.shape
t = (t * 1000.0).to(hidden_states)
t = self.t_embedder(t) # (N, D)
if self.has_text:
# y = self.y_embedder(y, self.training) # (B, N, D)
y = self.y_embedder(y) # (B, N, D)
c = t + y.mean(dim=1) # (N, D)
elif self.num_classes > 0:
c = t + self.y_embedder(y, self.training) # (N, D)
else:
c = t
if self.use_pe == 1 or self.use_pe == 2:
hidden_states = hidden_states + self.pos_embed
if self.video_frames > 0 and self.tpe:
# temporal pos
hidden_states = rearrange(
hidden_states, "b (t l) c -> (b l) t c", t=self.video_frames
)
hidden_states = hidden_states + self.temporal_pos_embedding
hidden_states = rearrange(hidden_states, "(b l) t c -> b (t l) c", b=_B)
residual = None
for layer_idx, block in enumerate(self.blocks):
if self.use_pe == 3:
hidden_states = hidden_states + self.pos_embed_list[layer_idx]
if self.use_checkpoint:
hidden_states, residual = torch.utils.checkpoint.checkpoint(
self.ckpt_wrapper(block), hidden_states, residual, c, y
)
else:
hidden_states, residual = block(
hidden_states, residual=residual, c=c, text=y
) # (N, T, D)
##### finished the Mamba blocks, here we apply the last Normalization layer
if not self.fused_add_norm:
if residual is None:
residual = hidden_states
else:
residual = residual + self.drop_path(hidden_states)
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
else:
# Set prenorm=False here since we don't need the residual
fused_add_norm_fn = (
rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
)
hidden_states = fused_add_norm_fn(
self.drop_path(hidden_states),
self.norm_f.weight,
self.norm_f.bias,
eps=self.norm_f.eps,
residual=residual,
prenorm=False,
residual_in_fp32=self.residual_in_fp32,
)
hidden_states = self.final_layer(hidden_states)
if self.video_frames > 0:
hidden_states = self.unpatchify_video(hidden_states, self.video_frames)
else:
hidden_states = self.unpatchify(hidden_states)
return hidden_states
def forward_with_cfg(self, x, t, y, cfg_scale):
raise NotImplementedError
"""
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, t, y)