-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlf_das.py
295 lines (242 loc) · 8.84 KB
/
lf_das.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""
A Python script for low frequency processing on DAS data.
"""
import dascore as dc
import numpy as np
import os
import shutil
import matplotlib.pyplot as plt
# from xarray.core.utils import FrozenDict
from dascore.utils.mapping import FrozenDict
# define functions
def _check_merge(plist):
if len(plist) > 1:
raise Exception("patch merge failed! Gap in data exists")
else:
return plist[0]
def _get_timestr(bgtime: np.datetime64) -> str:
timestr = str(bgtime.astype("datetime64[ms]"))[:21]
timestr = timestr.replace(":", "") # for windows compatable
return timestr
def _get_filename(bgtime, edtime) -> str:
filename = "LFDAS_" + _get_timestr(bgtime) + "_" + _get_timestr(edtime) + ".h5"
return filename
def _down_sample_processing(patch, freq=5, nqfreq_ratio=0.8, **kargs):
dt = np.timedelta64(int(1 / freq * 1e9), "ns")
corner_f = freq * 0.5 * nqfreq_ratio
proc_patch = patch
proc_patch = proc_patch.pass_filter(time=(None, corner_f))
new_taxis = np.arange(patch.attrs["time_min"], patch.attrs["time_max"], dt)
proc_patch = proc_patch.interpolate(time=new_taxis)
return proc_patch
def get_edge_effect_time(
sampling_interval, total_T, fun=_down_sample_processing, tol=1e-6, **kargs
):
N = int(total_T / sampling_interval)
taxis = (np.arange(N) - N // 2) * sampling_interval
data = np.zeros_like(taxis)
data[N // 2] = 1
coords = {"time": dc.to_datetime64(taxis), "distance": [0]}
data = data.reshape((-1, 1))
attrs = {"d_time": sampling_interval, "d_distance": 1}
newdata = dc.Patch(data=data, coords=coords, dims=["time", "distance"], attrs=attrs)
process_data = newdata.pipe(fun, **kargs)
freq = kargs.get("freq")
data = process_data.data[:, 0]
max_val = np.max(np.abs(data))
ind = np.abs(data) > max_val * tol
ind_1 = np.where(ind)[0][0]
ind_2 = np.where(ind)[0][-1]
new_taxis = process_data.coords["time"]
new_taxis = (new_taxis - new_taxis[0]) / np.timedelta64(
1, "s"
) - N // 2 * sampling_interval
edge_t = max(np.abs(new_taxis[ind_1]), np.abs(new_taxis[ind_2]))
if int(np.ceil(edge_t * freq)) * 2 >= int(total_T * freq):
raise ValueError(
f"edge_t value ({edge_t} sec) is too close to half \
of the processing chunk size ({total_T} sec).\
If your spool contains enough data (at least roughly more than 180 seconds)\
please increase memory_size or tolerance."
)
return edge_t
def get_patch_time(
memory_size,
sampling_rate,
num_ch,
bytes_per_element=8,
processing_factor=5,
memory_safety_factor=1.2,
):
mem_size_per_second = (
sampling_rate
* num_ch
* bytes_per_element
* processing_factor
* memory_safety_factor
/ 1e6
) # in MB
patch_length = memory_size / mem_size_per_second # in sec
return patch_length
def waterfall_plot(
some_data,
min_sec,
max_sec,
min_ch,
max_ch,
ch_start,
channel_spacing,
surface_fiber,
sample_rate,
fig_title,
fig_dir,
fig_name,
):
# Basic error checking
if (
(min_sec >= max_sec)
or (min_sec < 0)
or (max_sec * sample_rate > some_data.shape[1])
):
print(
"ERROR in plotSpaceTime inputs minSec: "
+ str(min_sec)
+ " or maxSec: "
+ str(max_sec)
)
return
if (min_ch >= max_ch) or (min_ch < 0) or (max_ch > some_data.shape[0]):
print(
"Error in plotSpaceTime inputs minCh: "
+ str(min_ch)
+ " or maxCh: "
+ str(max_ch)
+ " referring to array with "
+ str(some_data.shape[0])
+ " channels."
)
return
# turn time range (in seconds) to indices
minSecID = int(min_sec * sample_rate)
maxSecID = int(max_sec * sample_rate)
# to get reasonable saturation, clip the values
perc_clip = 95
clip_val = np.percentile(np.absolute(some_data), perc_clip)
# make the plot
plt.figure(figsize=(12, 8))
plt.imshow(
some_data[min_ch:max_ch, minSecID:maxSecID],
aspect="auto",
interpolation="none",
cmap="seismic",
extent=(
min_sec,
max_sec,
(max_ch + ch_start) * channel_spacing - surface_fiber,
(min_ch + ch_start) * channel_spacing - surface_fiber,
),
vmin=-clip_val,
vmax=clip_val,
)
plt.ylabel("MD (ft)", fontsize=10)
plt.xlabel("Time (sec)", fontsize=10)
plt.title(fig_title, fontsize=14)
plt.colorbar().set_label("Strain rate (1/s)", fontsize=10)
plt.savefig(fig_dir + "/" + fig_name + ".jpeg", dpi=600, format="jpeg")
plt.show()
# define the main class
class LFProc:
def __init__(self, sp=None):
self._spool = sp
self._para = self._default_process_parameters()
self._output_folder = None
def set_output_folder(self, folder, delete_existing=False):
self._output_folder = folder
if delete_existing and os.path.isdir(folder):
shutil.rmtree(folder)
print(f"original {folder} deleted")
if not os.path.isdir(folder):
os.mkdir(folder)
print(f"{folder} created")
def _default_process_parameters(self):
para = {
"output_sample_interval": 1.0, # in seconds
"process_patch_size": 100, # in number of output_sample_interval
"edge_buff_size": 10, # in number of output_sample_interval
"data_gap_tolorance": 10.0,
}
return para
def update_processing_parameter(self, **kwargs):
for key, value in kwargs.items():
if key not in self._para.keys():
print(f"{key} is not default parameter key")
else:
self._para[key] = value
return self.parameters
def get_last_processed_time(self):
out_sp = dc.spool(self._output_folder).update()
t_last = out_sp[-1].attrs["time_max"]
return t_last
def process_time_range(self, bgtime, edtime):
# define the main processing flow
def lp_process(DASdata, bgind, edind):
# low pass filter and downsampling
lfDAS = DASdata.pass_filter(time=(None, 1 / dt / 2 * 0.9)).interpolate(
time=time_grid[bgind:edind]
)
lfDAS = lfDAS.update_attrs(d_time=dt)
# output the result to output folder
filename = _get_filename(lfDAS.attrs["time_min"], lfDAS.attrs["time_max"])
filename = self._output_folder + "/" + filename
lfDAS.io.write(filename, "dasdae")
# define the processing flow to avoid repeat code
def merge_and_process(DASdata):
DASdata = self._spool.select(
time=(time_grid[data_end - 2 * buff_size], time_grid[new_data_end])
)
plist = dc.spool(DASdata).chunk(time=None)
DASdata = _check_merge(plist)
# low pass filter and down sample
lp_process(DASdata, data_end - buff_size, new_data_end - buff_size)
return DASdata
if self._output_folder is None:
raise Exception("Please setup output folder first")
dt = self._para["output_sample_interval"]
patch_size = self._para["process_patch_size"]
buff_size = self._para["edge_buff_size"]
time_grid = np.arange(
bgtime.astype("datetime64[ns]"),
edtime.astype("datetime64[ns]"),
np.timedelta64(int(dt * 1000), "ms"),
)
if len(time_grid) <= patch_size:
patch_size = len(time_grid) - 1
# load and process the first patch
i = 1
print("Processing patch ", str(i))
plist = self._spool.select(time=(time_grid[0], time_grid[patch_size]))
plist = dc.spool(plist).chunk(time=None)
DASdata = _check_merge(plist)
# low pass filter and downsampling
lp_process(DASdata, buff_size, patch_size - buff_size)
# processing for the rest of the dataset
data_end = patch_size
new_data_end = data_end + patch_size - 2 * buff_size
while new_data_end < len(time_grid):
i += 1
print("Processing patch ", str(i))
# reading new data
DASdata = merge_and_process(DASdata)
# update index
data_end = new_data_end
new_data_end = data_end + patch_size - 2 * buff_size
# dealing with the rest of data smaller than patch_size
if (len(time_grid) - data_end) > 1:
i += 1
new_data_end = len(time_grid) - 1
DASdata = merge_and_process(DASdata)
print(f"Processing patch {i} (Last portion of data)")
### property definiations
@property
def parameters(self):
return FrozenDict(self._para)