forked from luuuyi/CBAM.PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
209 lines (195 loc) · 9.03 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
from collections import OrderedDict
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.optim import lr_scheduler
from torchvision import transforms, models
from model import *
import pretrainedmodels
#DATA_ROOT = './datasets/xuelang_round1_test_a_20180709'
#DATA_ROOT = './datasets/xuelang_round1_test_b'
DATA_ROOT = './datasets/xuelang_round2_test_a_20180809'
RESULT_FILE = 'result.csv'
def test_and_generate_result(epoch_num, model_name='resnet101', img_size=320, is_multi_gpu=False):
data_transform = transforms.Compose([
transforms.Resize(img_size, Image.ANTIALIAS),
transforms.ToTensor(),
transforms.Normalize([0.53744068, 0.51462684, 0.52646497], [0.06178288, 0.05989952, 0.0618901])
])
os.environ['CUDA_VISIBLE_DEVICES'] = '4'
is_use_cuda = torch.cuda.is_available()
if 'resnet152' == model_name.split('_')[0]:
model_ft = models.resnet152(pretrained=True)
my_model = resnet152.MyResNet152(model_ft)
del model_ft
elif 'resnet50' == model_name.split('_')[0]:
model_ft = models.resnet50(pretrained=True)
my_model = resnet50.MyResNet50(model_ft)
del model_ft
elif 'resnet101' == model_name.split('_')[0]:
model_ft = models.resnet101(pretrained=True)
my_model = resnet101.MyResNet101(model_ft)
del model_ft
elif 'densenet121' == model_name.split('_')[0]:
model_ft = models.densenet121(pretrained=True)
my_model = densenet121.MyDenseNet121(model_ft)
del model_ft
elif 'densenet169' == model_name.split('_')[0]:
model_ft = models.densenet169(pretrained=True)
my_model = densenet169.MyDenseNet169(model_ft)
del model_ft
elif 'densenet201' == model_name.split('_')[0]:
model_ft = models.densenet201(pretrained=True)
my_model = densenet201.MyDenseNet201(model_ft)
del model_ft
elif 'densenet161' == model_name.split('_')[0]:
model_ft = models.densenet161(pretrained=True)
my_model = densenet161.MyDenseNet161(model_ft)
del model_ft
elif 'ranet' == model_name.split('_')[0]:
my_model = ranet.ResidualAttentionModel_92()
elif 'senet154' == model_name.split('_')[0]:
model_ft = pretrainedmodels.models.senet154(num_classes=1000, pretrained='imagenet')
my_model = MySENet154(model_ft)
del model_ft
else:
raise ModuleNotFoundError
state_dict = torch.load('./checkpoint/' + model_name + '/Models_epoch_' + epoch_num + '.ckpt', map_location=lambda storage, loc: storage.cuda())['state_dict']
if is_multi_gpu:
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
my_model.load_state_dict(new_state_dict)
else:
my_model.load_state_dict(state_dict)
if is_use_cuda:
my_model = my_model.cuda()
my_model.eval()
with open(os.path.join('checkpoint', model_name, model_name+'_'+str(img_size)+'_'+RESULT_FILE), 'w', encoding='utf-8') as fd:
fd.write('filename|defect,probability\n')
test_files_list = os.listdir(DATA_ROOT)
for _file in test_files_list:
file_name = _file
if '.jpg' not in file_name:
continue
file_path = os.path.join(DATA_ROOT, file_name)
img_tensor = data_transform(Image.open(file_path).convert('RGB')).unsqueeze(0)
if is_use_cuda:
img_tensor = Variable(img_tensor.cuda(), volatile=True)
output = F.softmax(my_model(img_tensor), dim=1)
defect_prob = round(output.data[0, 1], 6)
if defect_prob == 0.:
defect_prob = 0.000001
elif defect_prob == 1.:
defect_prob = 0.999999
target_str = '%s,%.6f\n' % (file_name, defect_prob)
fd.write(target_str)
def test_and_generate_result_round2(epoch_num, model_name='resnet101', img_size=320, is_multi_gpu=False):
data_transform = transforms.Compose([
transforms.Resize(img_size, Image.ANTIALIAS),
transforms.ToTensor(),
transforms.Normalize([0.53744068, 0.51462684, 0.52646497], [0.06178288, 0.05989952, 0.0618901])
])
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
is_use_cuda = torch.cuda.is_available()
if 'resnet152' == model_name.split('_')[0]:
model_ft = models.resnet152(pretrained=True)
my_model = resnet152.MyResNet152(model_ft)
del model_ft
elif 'resnet152-r2' == model_name.split('_')[0]:
model_ft = models.resnet152(pretrained=True)
my_model = resnet152.MyResNet152_Round2(model_ft)
del model_ft
elif 'resnet152-r2-2o' == model_name.split('_')[0]:
model_ft = models.resnet152(pretrained=True)
my_model = resnet152.MyResNet152_Round2_2out(model_ft)
del model_ft
elif 'resnet152-r2-2o-gmp' == model_name.split('_')[0]:
model_ft = models.resnet152(pretrained=True)
my_model = resnet152.MyResNet152_Round2_2out_GMP(model_ft)
del model_ft
elif 'resnet152-r2-hm-r1' == model_name.split('_')[0]:
model_ft = models.resnet152(pretrained=True)
my_model = resnet152.MyResNet152_Round2_HM_round1(model_ft)
del model_ft
elif 'resnet50' == model_name.split('_')[0]:
model_ft = models.resnet50(pretrained=True)
my_model = resnet50.MyResNet50(model_ft)
del model_ft
elif 'resnet101' == model_name.split('_')[0]:
model_ft = models.resnet101(pretrained=True)
my_model = resnet101.MyResNet101(model_ft)
del model_ft
elif 'densenet121' == model_name.split('_')[0]:
model_ft = models.densenet121(pretrained=True)
my_model = densenet121.MyDenseNet121(model_ft)
del model_ft
elif 'densenet169' == model_name.split('_')[0]:
model_ft = models.densenet169(pretrained=True)
my_model = densenet169.MyDenseNet169(model_ft)
del model_ft
elif 'densenet201' == model_name.split('_')[0]:
model_ft = models.densenet201(pretrained=True)
my_model = densenet201.MyDenseNet201(model_ft)
del model_ft
elif 'densenet161' == model_name.split('_')[0]:
model_ft = models.densenet161(pretrained=True)
my_model = densenet161.MyDenseNet161(model_ft)
del model_ft
elif 'ranet' == model_name.split('_')[0]:
my_model = ranet.ResidualAttentionModel_92()
elif 'senet154' == model_name.split('_')[0]:
model_ft = pretrainedmodels.models.senet154(num_classes=1000, pretrained='imagenet')
my_model = MySENet154(model_ft)
del model_ft
else:
raise ModuleNotFoundError
state_dict = torch.load('./checkpoint/' + model_name + '/Models_epoch_' + epoch_num + '.ckpt', map_location=lambda storage, loc: storage.cuda())['state_dict']
if is_multi_gpu:
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
my_model.load_state_dict(new_state_dict)
else:
my_model.load_state_dict(state_dict)
if is_use_cuda:
my_model = my_model.cuda()
my_model.eval()
with open(os.path.join('checkpoint', model_name, model_name+'_'+str(img_size)+'_'+RESULT_FILE), 'w', encoding='utf-8') as fd:
fd.write('filename|defect,probability\n')
test_files_list = os.listdir(DATA_ROOT)
for _file in test_files_list:
file_name = _file
if '.jpg' not in file_name:
continue
file_path = os.path.join(DATA_ROOT, file_name)
img_tensor = data_transform(Image.open(file_path).convert('RGB')).unsqueeze(0)
if is_use_cuda:
img_tensor = Variable(img_tensor.cuda(), volatile=True)
_, output, _ = my_model(img_tensor)
#output = my_model(img_tensor)
output = F.softmax(output, dim=1)
for k in range(11):
defect_prob = round(output.data[0, k], 6)
if defect_prob == 0.:
defect_prob = 0.000001
elif defect_prob == 1.:
defect_prob = 0.999999
target_str = '%s,%.6f\n' % (file_name + '|' + ('norm' if 0 == k else 'defect_'+str(k)), defect_prob)
fd.write(target_str)
if __name__ == '__main__':
#test_and_generate_result('10', 'resnet152_2018073100', 416, True)
#test_and_generate_result('2', 'resnet50_2018072500', 416, True)
#test_and_generate_result('7','resnet101_2018072600', 416, True)
#test_and_generate_result_round2('14','resnet152-r2-2o-gmp_2018081600', 600, True)
#test_and_generate_result_round2('14', 'resnet152-r2-2o_2018081300', 600, True)
#test_and_generate_result('12', 'densenet161_new_stra', 352, True)
#test_and_generate_result('25', 'ranet_2018072400', 416, True)
#test_and_generate_result('8', 'senet154_2018072500', 416, True)
test_and_generate_result_round2('9','resnet152-r2-hm-r1_2018082000', 576, True)