-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
67 lines (57 loc) · 2.43 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from pickletools import optimize
from pytorch_lightning.core.lightning import LightningModule
from torchmetrics import functional as FM
from torch import nn
from torch.nn import functional as F
import torch
import numpy as np
class LitModel(LightningModule):
def __init__(self, model, lr):
super().__init__()
self.model = model
self.model.fc = nn.Linear(512, 10)
self.lr = lr
self.result_dict = {'val_loss':[]}
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
acc = FM.accuracy(y_hat, y)
self.log("train_loss", loss, on_step=False, on_epoch=True)
self.log("train_acc", acc, on_step=False, on_epoch=True)
return loss
def training_epoch_end(self, outputs):
epoch = self.trainer.current_epoch
train_loss, train_acc = self.trainer.callback_metrics['train_loss'], self.trainer.callback_metrics['train_acc']
val_loss, val_acc = self.trainer.callback_metrics['val_loss'], self.trainer.callback_metrics['val_acc']
print(f'epoch: {epoch:2d} [train_loss: {train_loss:0.4f} val_loss: {val_loss:0.4f}] [train_acc: {train_acc:0.4f} val_acc: {val_acc:0.4f}]')
self.current_val_loss = val_loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
acc = FM.accuracy(y_hat, y)
self.log("val_loss", loss, on_step=False, on_epoch=True)
self.log("val_acc", acc, on_step=False, on_epoch=True)
return {'val_loss': loss, 'val_acc': acc}
def test_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
acc = FM.accuracy(logits, y)
loss = F.cross_entropy(logits, y)
self.log("test_loss", loss, on_step=False, on_epoch=True)
self.log("test_acc", acc, on_step=False, on_epoch=True)
def predict_step(self, batch, batch_idx, dataloader_idx=0):
x, y = batch
y_hat = self.model(x)
return y_hat
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=5, factor=0.5, mode='min', verbose=True)
return {
'optimizer': optimizer,
'lr_scheduler': scheduler,
'monitor': 'val_loss'
}