-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolicy_gradients_image.py
110 lines (93 loc) · 3.72 KB
/
policy_gradients_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#I referred to this when writing the code - https://github.com/DeepReinforcementLearning/DeepReinforcementLearningInAction/blob/master/Chapter%204/Ch4_book.ipynb
import numpy as np
import gym
import torch
from torch import nn
import matplotlib.pyplot as plt
import torchvision as tv
import torch.nn.functional as F
env = gym.make("ALE/Pong-v5")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
learning_rate = 0.001
episodes = 10000
def discount_rewards(reward, gamma = 0.99):
# return torch.pow(gamma, torch.arange(len(reward)))*reward
R = 0
returns = []
reward = reward.tolist()
for r in reward[::-1]:
R = r + gamma * R
returns.append(R)
returns = torch.tensor(returns[::-1])
return returns
def normalize_rewards(disc_reward):
if disc_reward.max()!=0:
return disc_reward/(disc_reward.max())
else:
return disc_reward / (disc_reward.max()+0.001)
class NeuralNetwork(nn.Module):
def __init__(self, state_size, action_size):
super(NeuralNetwork, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.grayscale = tv.transforms.Grayscale()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 3)
self.conv3 = nn.Conv2d(16, 32, 3)
self.fc1 = nn.Linear(13824, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, action_size)
self.softmax = nn.Softmax()
def forward(self,x):
x = self.grayscale(x)
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
x = self.softmax(x)
return x
model = NeuralNetwork(env.observation_space.shape[0], env.action_space.n).to(device)
opt = torch.optim.Adam(params = model.parameters(), lr = learning_rate)
score = []
for i in range(episodes):
print("i = ", i)
state = torch.tensor(env.reset(), dtype=torch.float32).unsqueeze(0)
state = state.reshape(1, 3, 210, 160)
done = False
transitions = []
tot_rewards = 0
while not done:
act_proba = model(state.to(device))
# print("act_proba = ",act_proba)
action = np.random.choice(np.array([0,1,2,3,4,5]), p = act_proba.cpu().data.numpy().reshape(-1))
next_state, reward, done, info = env.step(action)
tot_rewards += reward
transitions.append((state, action, tot_rewards))
state = torch.tensor(next_state, dtype=torch.float32).unsqueeze(0)
state = state.reshape(1, 3, 210, 160)
if i>0 and i%50==0:
print("i = ", i, ", reward = ", tot_rewards, ", loss = ", loss)
score.append(tot_rewards)
reward_batch = torch.Tensor([r for (s,a,r) in transitions])
disc_rewards = discount_rewards(reward_batch)
# print("disc_rewards = ", disc_rewards)
# nrml_disc_rewards = normalize_rewards(disc_rewards).to(device)
nrml_disc_rewards = disc_rewards.to(device)
state_batch = [s for (s,a,r) in transitions]
state_batch = torch.stack(state_batch).reshape(-1,3,210, 160)
action_batch = torch.Tensor([a for (s,a,r) in transitions]).to(device)
pred_batch = model(state_batch.to(device))
print("pred_batch = ", pred_batch, "action_batch = ", action_batch)
prob_batch = pred_batch.gather(dim=1, index=action_batch.long().view(-1, 1)).squeeze()
# print("prob_batch = ", torch.log(prob_batch))
loss = -(torch.sum(torch.log(prob_batch)*nrml_disc_rewards))
# print("loss = ", loss)
opt.zero_grad()
loss.backward()
opt.step()
plt.scatter(np.arange(len(score)), score)
plt.show()