-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
274 lines (241 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
import time
import torch
import torch.nn as nn
from tqdm import tqdm
import numpy as np
from test_score import score
from sklearn.metrics import accuracy_score, recall_score, precision_score, confusion_matrix, matthews_corrcoef, f1_score
from sklearn.metrics import classification_report
class EarlyStopping:
def __init__(self, dataset_name, logger_name, logger, patience=7, verbose=False, delta=0):
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
self.dataset = dataset_name
self.logger = logger
self.logger_name = logger_name
def __call__(self, val_loss, model, path):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model, path)
elif score < self.best_score + self.delta:
self.counter += 1
self.logger.debug(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model, path)
self.counter = 0
def save_checkpoint(self, val_loss, model, path):
if self.verbose:
self.logger.debug(
f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(),
os.path.join(path, str(self.logger_name) + str(self.dataset) + '_checkpoint.pth'))
self.val_loss_min = val_loss
def adjust_learning_rate(optimizer, epoch, lr_, logger):
lr_adjust = {epoch: lr_ * (0.5 ** ((epoch - 1) // 1))}
if epoch in lr_adjust.keys():
lr = lr_adjust[epoch]
for param_group in optimizer.param_groups:
param_group['lr'] = lr
logger.debug('Updating learning rate to {}'.format(lr))
def model_train(model, optimizer1,optimizer2, loss, device, train_loader, logger, n):
rec1 = []
rec2 = []
model.train()
model.to(device)
iter_start = time.time()
for i, (input_data, labels) in enumerate(train_loader):
iter_one_start = time.time()
input_data = input_data.float().to(device)
dec_out1, dec_out2, dec_out3 = model(input_data)
rec_loss1 = loss(input_data, dec_out1)
rec_loss2 = loss(input_data, dec_out3)
######################################################
loss1 = (1 / n) * rec_loss1 + (1 - 1 / n) * rec_loss2
loss1.backward()
optimizer1.step()
optimizer1.zero_grad()
dec_out1, dec_out2, dec_out3 = model(input_data)
rec_loss3 = loss(input_data, dec_out2)
rec_loss4 = loss(input_data, dec_out3)
loss2 = (1 / n) * rec_loss3 - (1 - 1 / n) * rec_loss4
loss2.backward()
optimizer2.step()
optimizer2.zero_grad()
######################################################
rec1.append(loss1.item())
rec2.append(loss2.item())
iter_one_end = time.time() - iter_one_start
if i % 100 == 0:
iter_end = time.time() - iter_start
left_time = iter_one_end * (len(train_loader) - i)
logger.debug(
f'iter : {i + 1} |rec1: {loss1.item():.4f} | rec2: {loss2.item():.4f} '
f'|cost_time: {int(iter_end // 3600):d}时{int((iter_end % 3600) // 60):d}分{(iter_end % 3600) % 60:.2f}秒'
f'|left time:{int(left_time // 3600):d}时{int((left_time % 3600) // 60):d}分{(left_time % 3600) % 60:.2f}秒')
rec1_res = torch.tensor(rec1).mean()
rec2_res = torch.tensor(rec2).mean()
return rec1_res, rec2_res
def model_evaluate(model, device, loss, val_loader, n):
model.eval()
total_rec1 = []
total_rec2 = []
for i, (input_data, _) in enumerate(tqdm(val_loader)):
input_data = input_data.float().to(device)
dec_out1, dec_out2, dec_out3 = model(input_data)
rec1 = loss(input_data, dec_out1)
rec2 = loss(input_data, dec_out2)
rec3 = loss(input_data, dec_out3)
loss1 = (1 / n) * rec1 + (1 - 1 / n) * rec3
loss2 = (1 / n) * rec2 - (1 - 1 / n) * rec3
total_rec1.append(loss1.item())
total_rec2.append(loss2.item())
total_rec1 = torch.tensor(total_rec1).mean()
total_rec2 = torch.tensor(total_rec2).mean()
return total_rec1, total_rec2
def loss_save(path, train_rec=None, val_rec=None, train_rec2=None, val_rec2=None):
if train_rec is not None:
train_rec = np.array(train_rec).reshape(-1)
np.save(path + 'train_rec', train_rec)
if train_rec2 is not None:
train_rec2 = np.array(train_rec2).reshape(-1)
np.save(path + 'train_rec', train_rec2)
if val_rec is not None:
val_rec = np.array(val_rec).reshape(-1)
np.save(path + 'val_rec', val_rec)
if val_rec2 is not None:
val_rec2 = np.array(val_rec2).reshape(-1)
np.save(path + 'val_rec', val_rec2)
def train(epoch, model, model_save_path, device, train_loader, logger, val_loader, lr, dataset_name, logger_name,
save_loss, n):
logger.debug('-----------THIS IS TRAIN START----------')
path = model_save_path + f'{str(logger_name)}_{dataset_name}/'
if not os.path.exists(path):
os.makedirs(path)
logger.debug(f'model_save_path:{path}')
loss = nn.MSELoss()
# optimizer1 = torch.optim.Adam((model.encoder.parameters()), lr=lr)
# optimizer2 = torch.optim.Adam(model.parameters(), lr=lr)
optimizer1 = torch.optim.Adam(list(model.encoder.parameters()) + list(model.decoder1.parameters()))
optimizer2 = torch.optim.Adam(list(model.encoder.parameters()) + list(model.decoder2.parameters()))
early_stopping = EarlyStopping(patience=3, verbose=True, dataset_name=dataset_name, logger=logger,
logger_name=logger_name)
total_rec1 = []
total_rec2 = []
val_total_rec1 = []
val_total_rec2 = []
for i in range(epoch):
logger.debug(f'====================Epoch:{i + 1}====================')
train_start = time.time()
rec1, rec2 = model_train(model, optimizer1, optimizer2,loss, device, train_loader, logger, n)
epoch_end = time.time() - train_start
logger.debug(
f'Epoch : {i + 1} | rec1 : {rec1:.4f} |rec1 : {rec1:.4f} '
f'| cost_time : {int(epoch_end // 3600):d}时{int((epoch % 3600) // 60):d}分{(epoch_end % 3600) % 60:.2f}秒')
total_rec1.append(rec1.item())
total_rec2.append(rec2.item())
val_rec1, val_rec2 = model_evaluate(model, device, loss, val_loader, n)
val_total_rec1.append(val_rec1.item())
val_total_rec2.append(val_rec2.item())
train_one_end = time.time() - train_start
train_left_time = train_one_end * (epoch - i)
logger.debug('=' * 20 + 'THIS IS VAL' + '=' * 20)
logger.debug(
f'Epoch : {i + 1} rec1 : {val_rec1} | rec2 : {val_rec2} '
f'train left time:{int(train_left_time // 3600):d}时{int((train_left_time % 3600) // 60):d}分{(train_left_time % 3600) % 60:.2f}秒')
early_stopping(val_rec1, model, path)
if early_stopping.early_stop:
logger.debug("Early stopping")
break
# adjust_learning_rate(optimizer, i + 1, lr, logger)
if save_loss is True:
logger.debug('=' * 20 + 'THIS IS SAVE LOSS' + '=' * 20)
loss_save(path, total_rec1, val_total_rec1, total_rec2, val_total_rec2)
def test(model, model_save_path, dataset_name, logger, device, train_loader, thre_loader, anomaly_ratio, logger_name, a,
b):
path = model_save_path + f'{str(logger_name)}_{dataset_name}/'
train_score_list = []
test_labels = []
model.load_state_dict(torch.load(
os.path.join(path,
str(logger_name) + str(dataset_name) + '_checkpoint.pth')))
model.eval()
logger.debug('----------THIS IS TEST START----------')
# 1 find threshold
for i, (input_data, labels) in enumerate(tqdm(train_loader)):
input_data = input_data.float().to(device)
model = model.to(device)
dec_out1, dec_out2, dec_out3 = model(input_data)
####################################################
final_score = score(input_data, dec_out1, dec_out3, a, b)
####################################################
train_score_list.append(final_score.detach().cpu().numpy())
train_score = np.concatenate(train_score_list, axis=0).reshape(-1)
train_score = np.array(train_score)
thresh = np.percentile(train_score, 100 - anomaly_ratio)
logger.debug("###################################################")
logger.debug(f"Threshold :{thresh}")
logger.debug("###################################################")
# 2 test
test_score_list = []
for i, (input_data, labels) in enumerate(tqdm(thre_loader)):
input_data = input_data.float().to(device)
dec_out1, dec_out2, dec_out3 = model(input_data)
al_score = score(input_data, dec_out1, dec_out3, a, b)
test_labels.append(labels.detach().cpu().numpy())
test_score_list.append(np.array(al_score.detach().cpu().numpy()))
test_score = np.concatenate(test_score_list, axis=0).reshape(-1)
test_labels = np.concatenate(test_labels, axis=0).reshape(-1)
test_score = np.array(test_score)
test_labels = np.array(test_labels)
# test_score = train_score_list[0].reshape(-1)
pred = (test_score > thresh).astype(int)
gt = test_labels.astype(int)
logger.debug(f"pred:{pred.shape}")
logger.debug(f"gt:{gt.shape}")
# detection adjustment
anomaly_state = False
for i in range(len(gt)):
if gt[i] == 1 and pred[i] == 1 and not anomaly_state:
anomaly_state = True
for j in range(i, 0, -1):
if gt[j] == 0:
break
else:
if pred[j] == 0:
pred[j] = 1
for j in range(i, len(gt)):
if gt[j] == 0:
break
else:
if pred[j] == 0:
pred[j] = 1
elif gt[i] == 0:
anomaly_state = False
if anomaly_state:
pred[i] = 1
pred = np.array(pred)
gt = np.array(gt)
logger.debug(f'pred: {pred.shape}')
logger.debug(f'gt: {gt.shape}')
accuracy = accuracy_score(gt, pred)
precision = precision_score(gt, pred)
recall = recall_score(gt, pred)
f_score = f1_score(gt, pred)
MCC = matthews_corrcoef(gt, pred)
conf = confusion_matrix(gt, pred)
logger.debug(
"Accuracy : {:0.4f}, Precision : {:0.4f}, Recall : {:0.4f}, F-score : {:0.4f} ,MCC : {:0.4F} ".format(
accuracy, precision,
recall, f_score, MCC))
logger.debug(f"\n {conf}")
logger.debug(f"\n {classification_report(gt, pred)}")