-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspectraPlot.py
581 lines (448 loc) · 19.4 KB
/
spectraPlot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
"""spectral plot"""
import numpy as np
import pandas as pd
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg
from matplotlib.figure import Figure
from matplotlib.gridspec import GridSpec
import matplotlib.pyplot as plt
# import nx_pylab
import nmrProblem
import simpleNMRutils
def createH1C13interactivePlot(nmrprblm, h1c13distlist, ax0):
# w1 = widgets.Output()
udic = nmrprblm.udic
if "info" not in udic[0]:
print("info not in udic[0]")
return
peak_overlays = []
peak_overlays_dict = {}
# for proton and carbon spectra
for i in range(udic["ndim"]):
peak_overlays1 = []
for Hi in udic[i]["info"].index:
il = int(udic[i]["info"].loc[Hi, "pk_left"])
ir = int(udic[i]["info"].loc[Hi, "pk_right"])
(pk,) = ax0[1 - i].plot(
udic[i]["axis"].ppm_scale()[il:ir],
udic[i]["spec"][il:ir],
lw=0.5,
c="black",
label=Hi,
gid=Hi,
)
peak_overlays1.append(pk)
peak_overlays_dict[Hi] = pk
peak_overlays.append(peak_overlays1)
return peak_overlays_dict, peak_overlays
class MatplotlibH1C13Plot(Figure):
"""H1 C13 1D spectra window based on matplotlib"""
def __init__(self, nmrprblm):
"""init"""
self.nmrproblem = nmrprblm
self.hmbc_edge_colors = nmrprblm.hmbc_edge_colors
super(MatplotlibH1C13Plot, self).__init__(
constrained_layout=True, figsize=(4, 4), dpi=100
)
gs = GridSpec(2, 6, figure=self)
self.c13spec_ax = self.add_subplot(
gs[0, :4], label="C13_1Dspect", gid="C13_1Dspect_id"
) # carbon 1D spectrum
self.c13dist_ax = self.add_subplot(
gs[0, 4:], label="C13_1Ddist", gid="C13_1Ddist_id"
) # carbon distribution
self.h1spec_ax = self.add_subplot(
gs[-1, :4], label="H1_1Dspect", gid="H1_1Dspect_id"
) # proton 1D spectrum
self.h1dist_ax = self.add_subplot(
gs[-1, 4:], label="H1_1Ddist", gid="H1_1Ddist_id"
) # proton ppm distribution
if self.nmrproblem.data_complete:
self.draw_spectra(
self.nmrproblem,
self.c13spec_ax,
self.c13dist_ax,
self.h1spec_ax,
self.h1dist_ax,
)
self.annot_C13 = self.init_annotation(self.c13spec_ax)
self.annot_H1 = self.init_annotation(self.h1spec_ax)
def draw_spectra(self, nmrprblm, c13spec_ax, c13dist_ax, h1spec_ax, h1dist_ax):
"""draw spectra"""
self.nmrproblem = nmrprblm
self.c13spec_ax = c13spec_ax
self.c13dist_ax = c13dist_ax
self.h1spec_ax = h1spec_ax
self.h1dist_ax = h1dist_ax
self.nmrproblem.peak_overlays_data = self.create1H13C1DSpectraOverlayData(
self.nmrproblem
)
self.nmrproblem.spectra1D = self.create1H13C1DspectraData(self.nmrproblem)
self.nmrproblem.distribution_data = self.createH1C13PlotDistributionsData(
self.nmrproblem, 3
)
self.display1H13C1DmatplotlibSpectra(
self.nmrproblem, [self.h1spec_ax, self.c13spec_ax]
)
(
self.peak_overlays_dict,
self.peak_overlays,
) = self.createH1C13matplotlibOverlaysPlot(
self.nmrproblem, [self.h1spec_ax, self.c13spec_ax]
)
# self.display1H13C1Dspectra([self.c13spec_ax, self.h1spec_ax], nmrproblem)
self.h1distdict, self.c13distdict = self.plotDistributions(
self.nmrproblem, [self.h1dist_ax, self.c13dist_ax]
)
# self.c13distdict = self.plotC13Distributions(self.c13dist_ax, 3, self.nmrproblem)
# self.h1distdict = self.plotH1Distributions(self.h1dist_ax, 3, self.nmrproblem)
self.h1c13distlist = [self.h1distdict, self.c13distdict]
def createH1C13PlotDistributionsData(self, nmrprblm, num_candidates):
"""create H1 C13 plot distributions data"""
C13_ppm_axis = np.linspace(-30, 250, 500)
H1_ppm_axis = np.linspace(-2, 16, 500)
catoms = nmrprblm.carbonAtoms
hatoms = nmrprblm.protonAtoms
atoms = [hatoms, catoms]
ppm_axis = [H1_ppm_axis, C13_ppm_axis]
iprobs = nmrprblm.iprobs
df = nmrprblm.df
C13df = nmrprblm.udic[1]["df"]
H1df = nmrprblm.udic[0]["df"]
H1C13df = [H1df, C13df]
distributions = {}
for i in range(2):
for k, ci in enumerate(atoms[i]):
distributions[ci] = {}
for j in iprobs[ci][:num_candidates]:
distributions[ci][j] = pd.DataFrame(
{
"xxx": ppm_axis[i],
"yyy": H1C13df[i].loc[j, "norm"].pdf(ppm_axis[i]),
}
)
distributions[ci][j]["label"] = H1C13df[i].loc[
j, "sF_latex_matplotlib"
]
distributions[ci][j]["vline"] = float(df.loc["ppm", ci])
return distributions
def create1H13C1DspectraData(self, nmrprblm: nmrProblem.NMRproblem):
"""create 1H 13C 1D spectra data"""
spectra_1d = {}
h1c13 = ["proton1Dspectrum", "carbon1Dspectrum"]
udic = nmrprblm.udic
for i in range(2):
xxx = udic[i]["axis"].ppm_scale()
yyy = udic[i]["spec"]
iii = ((np.roll(yyy, 1) - yyy) ** 2) > 1e-8
iii[0] = 1.0
iii[-1] = 1.0
df = pd.DataFrame(
data=np.array([xxx, yyy, iii]).transpose(),
columns=["xxx", "yyy", "iii"],
)
df = df[df["iii"] == 1.0][["xxx", "yyy"]]
spectra_1d[h1c13[i]] = df
return spectra_1d
def highlight_C13_peak(self, lbl):
"""highlight C13 peak"""
self.peak_overlays_dict[lbl].set_visible(True)
self.peak_overlays_dict[lbl].set_linewidth(0.75)
self.peak_overlays_dict[lbl].set_color("red")
def reset_peak_overlays_eeh(self):
"""reset peak overlays"""
for k, v in self.peak_overlays_dict.items():
v.set_visible(False)
self.canvas.draw_idle()
def reset_distributions_eeh(self):
"""reset distributions"""
for atom in [0, 1]:
for k, lines in self.h1c13distlist[atom].items():
for line in lines:
line.set_visible(False)
self.h1dist_ax.legend([], [])
self.c13dist_ax.legend([])
self.canvas.draw_idle()
def reset_hmbc_overlays_eeh(self):
"""reset hmbc overlays"""
for k, v in self.hmbc_overlays_dict.items():
v.set_visible(False)
self.canvas.draw_idle()
# highlight hmbc peaks
def highlight_hmbc_C13_peaks(self, lbl):
"""highlight hmbc C13 peaks"""
if lbl in self.nmrproblem.hmbc_graph_edges.keys():
for i, ci in enumerate(self.nmrproblem.hmbc_graph_edges[lbl]):
self.peak_overlays_dict[ci].set_visible(True)
self.peak_overlays_dict[ci].set_linewidth(1.0)
self.peak_overlays_dict[ci].set_color(self.hmbc_edge_colors[i])
# highlight H1 peaks when lbl is a carbon atom
def highlight_H1_peaks_from_highlighted_carbon_atom(self, lbl):
"""highlight H1 peaks from highlighted carbon atom"""
# label expected to be C13
highlighted_H1_lbls = self.nmrproblem.hsqc[self.nmrproblem.hsqc.f2Cp_i == lbl][
"f2H_i"
]
# highlight corresponding H1 HSQC peaks ins 1D proton Spectrum
for hlbl in highlighted_H1_lbls:
self.peak_overlays_dict[hlbl].set_visible(True)
self.peak_overlays_dict[hlbl].set_linewidth(0.75)
self.peak_overlays_dict[hlbl].set_color("red")
def highlight_H1_HMBC_peaks(self, lbl):
"""highlight H1 HMBC peaks"""
if lbl in self.nmrproblem.hmbc_graph_edges.keys():
for i, ci in enumerate(self.nmrproblem.hmbc_graph_edges[lbl]):
hmbc_h1s = self.nmrproblem.hsqc[self.nmrproblem.hsqc.f1C_i == ci][
"f2H_i"
].tolist()
for j, hi in enumerate(hmbc_h1s):
self.peak_overlays_dict[hi].set_visible(True)
self.peak_overlays_dict[hi].set_linewidth(1.0)
self.peak_overlays_dict[hi].set_color(self.hmbc_edge_colors[i])
def create1H13C1DSpectraOverlayData(self, nmrprblm):
"""create 1H 13C 1D spectra overlay data"""
# w1 = widgets.Output()
udic = nmrprblm.udic
if "info" not in udic[0]:
return
# peak_overlays = []
peak_overlays_data = {}
# for proton and carbon spectra
for i in range(udic["ndim"]):
# peak_overlays1 = []
for Hi in udic[i]["info"].index:
il = int(udic[i]["info"].loc[Hi, "pk_left"])
ir = int(udic[i]["info"].loc[Hi, "pk_right"])
peak_overlays_data[Hi] = pd.DataFrame(
{
"xxx": udic[i]["axis"].ppm_scale()[il:ir],
"yyy": udic[i]["spec"][il:ir],
}
)
return peak_overlays_data
def createH1C13interactivePlot(self, nmrprblm, h1c13distlist, ax0):
"""create H1 C13 interactive plot"""
# w1 = widgets.Output()
udic = nmrprblm.udic
if "info" not in udic[0]:
print("info not in udic[0]")
return
peak_overlays = []
peak_overlays_dict = {}
# for proton and carbon spectra
for i in range(udic["ndim"]):
peak_overlays1 = []
for Hi in udic[i]["info"].index:
il = int(udic[i]["info"].loc[Hi, "pk_left"])
ir = int(udic[i]["info"].loc[Hi, "pk_right"])
(pk,) = ax0[1 - i].plot(
udic[i]["axis"].ppm_scale()[il:ir],
udic[i]["spec"][il:ir],
lw=0.5,
c="black",
label=Hi,
gid=Hi,
)
peak_overlays1.append(pk)
peak_overlays_dict[Hi] = pk
peak_overlays.append(peak_overlays1)
return peak_overlays_dict, peak_overlays
def createH1C13matplotlibOverlaysPlot(self, nmrprblm, ax0):
"""create H1 C13 matplotlib overlays plot"""
# w1 = widgets.Output()
atoms = [nmrprblm.protonAtoms, nmrprblm.carbonAtoms]
peak_overlays = []
peak_overlays_dict = {}
# for proton and carbon spectra
for i, ax in enumerate(ax0):
peak_overlays1 = []
for atom_id in atoms[i]:
(pk,) = ax.plot(
nmrprblm.peak_overlays_data[atom_id]["xxx"],
nmrprblm.peak_overlays_data[atom_id]["yyy"],
lw=0.5,
c="black",
label=atom_id,
gid=atom_id,
)
peak_overlays1.append(pk)
peak_overlays_dict[atom_id] = pk
peak_overlays.append(peak_overlays1)
return peak_overlays_dict, peak_overlays
def display1H13C1DmatplotlibSpectra(self, nmrprblm: nmrProblem.NMRproblem, ax0):
"""display 1H 13C 1D matplotlib spectra"""
xxx_labels = ["$^{1}$H [ppm]", "$^{13}$C [ppm]"]
gid = ["h1ppm", "c13ppm"]
spectra_id = list(nmrprblm.spectra1D.keys())
for i, ax in enumerate(ax0):
ax.plot(
nmrprblm.spectra1D[spectra_id[i]]["xxx"],
nmrprblm.spectra1D[spectra_id[i]]["yyy"],
color="black",
lw=0.5,
)
# ax.set_xlim(ax.get_xlim()[::-1])
ax.set_xlim(nmrprblm.min_max_1D_ppm[i])
ax.spines["top"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.set_xlabel(xxx_labels[i], fontsize=10, gid=gid[i])
ax.set_yticks([])
def plotDistributions(self, nmrprblm, ax0):
"""plot distributions"""
CB_color_cycle = ['#377eb8', '#ff7f00', '#4daf4a',
'#f781bf', '#a65628', '#984ea3',
'#999999', '#e41a1c', '#dede00']
atoms = [nmrprblm.protonAtoms, nmrprblm.carbonAtoms]
xxx_labels = ["$^{1}$H [ppm]", "$^{13}$C [ppm]"]
distdict = {}
# for proton and carbon spectra
for i, ax in enumerate(ax0):
distdict[i] = {}
ax.spines["top"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.set_xlabel(xxx_labels[i], fontsize=10, gid="ppm")
ax.set_yticks([])
for atom_id in atoms[i]:
distlist = []
j = None
for j, d in nmrprblm.distribution_data[atom_id].items():
print("j", j, type(j))
if isinstance(j, (int, float)):
(distr,) = ax.plot(
d["xxx"], d["yyy"], "-", label=d.loc[0, "label"], c=CB_color_cycle[j%len(CB_color_cycle)]
)
distr.set_visible(False)
distlist.append(distr)
if j:
dline = ax.axvline(
nmrprblm.distribution_data[atom_id][j].loc[0, "vline"], c="r"
)
dline.set_visible(False)
distlist.append(dline)
distdict[i][atom_id] = distlist
ax.set_xlim(ax.get_xlim()[::-1])
return distdict[0], distdict[1]
def plotC13Distributions(self, ax, num_candidates, nmrprblm):
"""plot C13 distributions"""
ax.spines["top"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.set_xlabel("ppm", fontsize=10, gid="ppm")
ax.set_yticks([])
# plot top three candidates for each carbon present
C13_ppm_axis = np.linspace(-30, 250, 500)
catoms = nmrprblm.carbonAtoms
iprobs = nmrprblm.iprobs
df = nmrprblm.df
C13df = nmrprblm.udic[1]["df"]
c13distdict = {}
for k, ci in enumerate(catoms):
distlist = []
for i in iprobs[ci][:num_candidates]:
(c13distr,) = ax.plot(
C13_ppm_axis,
C13df.loc[i, "norm"].pdf(C13_ppm_axis),
label=C13df.loc[i, "sF_latex_matplotlib"],
)
c13distr.set_visible(False)
distlist.append(c13distr)
c13line = ax.axvline(float(df.loc["ppm", ci]))
c13line.set_visible(False)
distlist.append(c13line)
c13distdict[ci] = distlist
ax.set_xlabel("$^{13}$C [ppm]")
ax.set_xlim(260, -40)
return c13distdict
def plotH1Distributions(self, ax, num_candidates, nmrprblm):
"""plot H1 distributions"""
ax.spines["top"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.set_xlabel("ppm", fontsize=10, gid="ppm")
ax.set_yticks([])
# plot top three candidates for each carbon present
H1_ppm_axis = np.linspace(-5, 16, 500)
patoms = nmrprblm.protonAtoms
H1df = nmrprblm.udic[0]["df"]
iprobs = nmrprblm.iprobs
df = nmrprblm.df
h1distdict = {}
for k, hi in enumerate(patoms):
distlist = []
for i in iprobs[hi][:num_candidates]:
(h1distr,) = ax.plot(
H1_ppm_axis,
H1df.loc[i, "norm"].pdf(H1_ppm_axis),
label=H1df.loc[i, "sF_latex_matplotlib"],
)
h1distr.set_visible(False)
distlist.append(h1distr)
h1line = ax.axvline(float(df.loc["ppm", hi]))
h1line.set_visible(False)
distlist.append(h1line)
h1distdict[hi] = distlist
ax.set_xlabel("$^{1}$H [ppm]")
ax.set_xlim(12, -2)
return h1distdict
def init_annotation(self, ax):
"""initialize annotation"""
annot = ax.annotate(
"",
xy=(0, 0),
xytext=(10, 40),
textcoords="offset points",
va="center",
ha="center",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"),
)
annot.set_visible(False)
return annot
def display_annotation_C13_from_molplot(self, lbl, annot):
"""display annotation for C13 from molplot"""
# find x,y coordinates of the label
atom_index = int(lbl[1:])
ppm = self.nmrproblem.c13.loc[atom_index, "ppm"]
annot_text = f"{lbl}: {ppm:.1f} ppm"
x = self.nmrproblem.c13.loc[atom_index, "ppm"]
y = 0.3
annot.set_text(annot_text)
annot.xy = (x, y)
annot.set_visible(True)
def display_annotation_H1_from_molplot(self, lbl, annot, nmrproblem):
"""Display annotation for H1 from molplot"""
highlighted_H1_lbls = nmrproblem.hsqc[nmrproblem.hsqc.f2Cp_i == lbl]["f2H_i"]
def format_annotation_text(atom_index, atom_label):
ppm = nmrproblem.h1.loc[atom_index, "ppm"]
integral = nmrproblem.h1.loc[atom_index, "integral"]
print("atom_index", atom_index, "integral", integral)
print(nmrproblem.h1["integral"])
jcoupling = nmrproblem.h1.loc[atom_index, "jCouplingClass"]
jcouplingvals = nmrproblem.h1.loc[atom_index, "jCouplingVals"]
jcouplingvals = simpleNMRutils.stringify_vals(jcouplingvals)
if jcoupling == "u":
return f"{atom_label}: {ppm:.2f} ppm\nInt: {integral:.1f}"
else:
return f"{atom_label}: {ppm:.2f} ppm\nInt: {integral:.1f}\nJ: {jcoupling}: {jcouplingvals} Hz"
if highlighted_H1_lbls.empty:
return
x_vals = []
annot_text_list = []
for idx in highlighted_H1_lbls.index:
print("idx", idx)
print("highlighted_H1_lbls[idx]", highlighted_H1_lbls[idx])
atom_index = int(highlighted_H1_lbls[idx][1:])
atom_label = highlighted_H1_lbls[idx]
x = nmrproblem.h1.loc[atom_index, "ppm"]
x_vals.append(x)
y = 0.3
annot_text_list.append(format_annotation_text(atom_index, atom_label))
annot_text = "\n".join(annot_text_list)
x = np.mean(x_vals)
annot.set_text(annot_text)
annot.xy = (x, y)
annot.set_visible(True)
def hide_annotation(self, annot):
"""hide annotation"""
annot.set_visible(False)