-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGenreClassificationWithCNN-LSTM.py
173 lines (120 loc) · 4.38 KB
/
GenreClassificationWithCNN-LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python
# coding: utf-8
# In[250]:
#importing libraries
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
import librosa
import matplotlib.pyplot as plt
import os
from PIL import Image
from pathlib import Path
import csv
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
import tensorflow as tf
import keras
import librosa.display
songname = f'/home/em/Desktop/genres/blues/blues.00000.wav'
y, sr = librosa.load(songname, mono=True, duration=2, offset=0)
ps = librosa.feature.melspectrogram(y=y, sr=sr, hop_length = 256, n_fft = 512, n_mels=128)
ps = librosa.power_to_db(ps**2)
ps.shape
# In[251]:
dataset = []
genres = {'blues': 0, 'classical': 1, 'country': 2, 'disco': 3, 'hiphop': 4,
'jazz': 5, 'metal': 6, 'pop': 7, 'reggae': 8, 'rock': 9}
for genre, genre_number in genres.items():
for filename in os.listdir(f'/home/em/Desktop/genres/{genre}'):
songname = f'/home/em/Desktop/genres/{genre}/{filename}'
for index in range(14):
y, sr = librosa.load(songname, mono=True, duration=2, offset=index*2)
ps = librosa.feature.melspectrogram(y=y, sr=sr, hop_length = 256, n_fft = 512, n_mels=64)
ps = librosa.power_to_db(ps**2)
dataset.append( (ps, genre_number) )
# In[252]:
print(len(dataset))
# In[253]:
import random
random.shuffle(dataset)
train = dataset[:10000]
valid = dataset[10000:12000]
test = dataset[12000:]
X_train, Y_train = zip(*train)
X_valid, Y_valid = zip(*valid)
X_test, Y_test = zip(*test)
# Reshape for CNN input
X_train = np.array([x.reshape( (64, 173, 1) ) for x in X_train])
X_valid = np.array([x.reshape( (64, 173, 1) ) for x in X_valid])
X_test = np.array([x.reshape( (64, 173, 1) ) for x in X_test])
# One-Hot encoding for classes
Y_train = np.array(keras.utils.to_categorical(Y_train, 10))
Y_valid = np.array(keras.utils.to_categorical(Y_valid, 10))
Y_test = np.array(keras.utils.to_categorical(Y_test, 10))
# In[254]:
len(X_train)
X_train.shape
n_features = X_train.shape[2]
input_shape = (None, X_train.shape[1])
print(input_shape)
model_input = Input(input_shape, name='input')
print(model_input)
X_train.shape
# In[397]:
import keras
# Classification with Keras
# Building our Network
from keras import models
from keras import layers
from keras import Input, backend, Model
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from keras.layers import Dense, Lambda
from keras.layers import Activation
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dropout
from keras.layers import Flatten, GRU
from keras.layers import BatchNormalization
from keras.layers import AveragePooling2D
from keras.layers.wrappers import TimeDistributed
from keras import regularizers
model = Sequential()
model.add(Conv2D(20, (5, 5), input_shape=(64, 173, 1),
activation="relu", strides=1, padding="valid"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(50, (5, 5), use_bias=50))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(20, activation="relu"))
model.add(Lambda(lambda x: backend.expand_dims(model.output, axis=-1)))
model.add(LSTM(512, activation="relu", return_sequences=False))
model.add(Dense(10, activation = "softmax"))
model.summary()
# In[398]:
from keras.optimizers import Adam
model.compile(optimizer=Adam(lr = 1e-5), loss="categorical_crossentropy", metrics=['accuracy'])
# In[399]:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor='val_loss', patience=20, verbose=2)
history = model.fit(X_train, Y_train, epochs=90, batch_size=64, validation_data= (X_test, Y_test), callbacks=[early_stopping])
# In[400]:
plt.figure(figsize=(12,8))
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['accuracy','val_accuracy'])
plt.show()
plt.figure(figsize=(12,8))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.legend(['loss','val_loss'])
plt.show()
train_loss, train_acc = model.evaluate(X_train, Y_train, verbose = 2)
test_loss, test_acc = model.evaluate(X_test, Y_test, verbose = 2)
print('Training accuracy:', train_acc)
print('Test accuracy:', test_acc)