@@ -245,7 +245,7 @@ class FiniteElement
245
245
FiniteElement& operator =(FiniteElement&& element) = default ;
246
246
247
247
// / Check if two elements are the same
248
- // / @note This operator compares the element properties, e.g. family,
248
+ // / @note This operator compares the element properties, eg family,
249
249
// / degree, etc, and not computed numerical data
250
250
// / @return True if elements are the same
251
251
bool operator ==(const FiniteElement& e) const ;
@@ -275,7 +275,7 @@ class FiniteElement
275
275
// / @return The basis functions (and derivatives). The shape is
276
276
// / (derivative, point, basis fn index, value index).
277
277
// / - The first index is the derivative, with higher derivatives are
278
- // / stored in triangular (2D) or tetrahedral (3D) ordering, i.e. for
278
+ // / stored in triangular (2D) or tetrahedral (3D) ordering, ie for
279
279
// / the (x,y) derivatives in 2D: (0,0), (1,0), (0,1), (2,0), (1,1),
280
280
// / (0,2), (3,0)... The function basix::indexing::idx can be used to find the
281
281
// / appropriate derivative.
@@ -299,7 +299,7 @@ class FiniteElement
299
299
// / value_size). The function `FiniteElement::tabulate_shape` can be
300
300
// / used to get the required shape.
301
301
// / - The first index is the derivative, with higher derivatives are
302
- // / stored in triangular (2D) or tetrahedral (3D) ordering, i.e. for
302
+ // / stored in triangular (2D) or tetrahedral (3D) ordering, ie for
303
303
// / the (x,y) derivatives in 2D: (0,0), (1,0), (0,1), (2,0), (1,1),
304
304
// / (0,2), (3,0)... The function basix::indexing::idx can be used to
305
305
// / find the appropriate derivative.
@@ -321,7 +321,7 @@ class FiniteElement
321
321
// / @return Polynomial degree
322
322
int degree () const ;
323
323
324
- // / The element value tensor shape, e.g. returning {} for scalars, {3}
324
+ // / The element value tensor shape, eg returning {} for scalars, {3}
325
325
// / for vectors in 3D, {2, 2} for a rank-2 tensor in 2D.
326
326
// / @return Value shape
327
327
const std::vector<int >& value_shape () const ;
@@ -693,7 +693,7 @@ class FiniteElement
693
693
void apply_inverse_dof_transformation_to_transpose (
694
694
const xtl::span<T>& data, int block_size, std::uint32_t cell_info) const ;
695
695
696
- // / Return the interpolation points, i.e. the coordinates on the
696
+ // / Return the interpolation points, ie the coordinates on the
697
697
// / reference element where a function need to be evaluated in order
698
698
// / to interpolate it in the finite element space.
699
699
// / @return Array of coordinate with shape `(num_points, tdim)`
@@ -895,7 +895,7 @@ class FiniteElement
895
895
896
896
// Shape function coefficient of expansion sets on cell. If shape
897
897
// function is given by @f$\psi_i = \sum_{k} \phi_{k}
898
- // \alpha^{i}_{k}@f$, then _coeffs(i, j) = @f$\alpha^i_k@f$. i.e.,
898
+ // \alpha^{i}_{k}@f$, then _coeffs(i, j) = @f$\alpha^i_k@f$. ie
899
899
// _coeffs.row(i) are the expansion coefficients for shape function i
900
900
// (@f$\psi_{i}@f$).
901
901
xt::xtensor<double , 2 > _coeffs;
0 commit comments