|
46 | 46 | # First we retrieve the probability map of a motor area
|
47 | 47 | # from the Julich-Brain cytoarchitectonic atlas.
|
48 | 48 | region = siibra.get_region("julich 3.0.3", "4p right")
|
49 |
| -probmaps = region.parcellation.get_map("mni152", "statistical") |
50 |
| -region_map = probmaps.get_volume(region) |
| 49 | +region_map = region.get_regional_map("mni152", "statistical") |
51 | 50 |
|
52 | 51 | # %%
|
53 | 52 | # We can use the probability map as a query to extract 1 micron resolution
|
|
84 | 83 | # Next we plot the section itself and identify the larger region of
|
85 | 84 | # interest around the patch, using the bounding box
|
86 | 85 | # of the centers of most relevant patches with a bit of padding.
|
87 |
| -patch_locations = siibra.PointCloud( |
88 |
| - [tuple(p.get_boundingbox().center) for p in patches], |
89 |
| - space='bigbrain' |
90 |
| -) |
| 86 | +patch_locations = siibra.PointCloud.union(*[p.get_boundingbox().center for p in patches]) |
91 | 87 | roi = patch_locations.boundingbox.zoom(1.5)
|
92 | 88 |
|
93 | 89 | # fetch the section at reduced resolution for plotting.
|
|
139 | 135 | # %%
|
140 | 136 | # Plot the region of interest again, this time with the cortical profile that
|
141 | 137 | # defined the patch, as well as other candidate patch's locations
|
142 |
| -# with their relevance scores, ie. probabilities. |
| 138 | +# with their relevance scores, ie. probabilities. |
143 | 139 | display = plotting.plot_img(roi_img, display_mode="y", cmap='gray', annotate=False)
|
144 | 140 | ax = list(display.axes.values())[0].ax
|
145 | 141 |
|
|
156 | 152 | ax.plot(X, Z, "r-", lw=2)
|
157 | 153 |
|
158 | 154 | # sphinx_gallery_thumbnail_number = -2
|
159 |
| - |
160 |
| -# %% |
0 commit comments