-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathadd_grid_ref_algorithm.py
303 lines (260 loc) · 12.3 KB
/
add_grid_ref_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# -*- coding: utf-8 -*-
"""
/***************************************************************************
AddGridRef
A QGIS plugin
Adds British or Irish grid references to layers
Generated by Plugin Builder: http://g-sherman.github.io/Qgis-Plugin-Builder/
-------------------
begin : 2019-01-30
copyright : (C) 2019 by Field Studies Council
email : r.burkmar@field-studies-council.org
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
"""
__author__ = 'Field Studies Council'
__date__ = '2019-01-30'
__copyright__ = '(C) 2019 by Field Studies Council'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
from PyQt5.QtCore import (QCoreApplication, QVariant)
from qgis.core import (QgsProcessing,
QgsMessageLog,
QgsFeatureSink,
QgsFeature,
QgsProcessingAlgorithm,
QgsField,
QgsCoordinateReferenceSystem,
QgsCoordinateTransform,
QgsProject,
QgsProcessingParameterFeatureSource,
QgsProcessingParameterEnum,
QgsProcessingParameterString,
QgsProcessingParameterFeatureSink,
Qgis)
from . import osgr
class AddGridRefAlgorithm(QgsProcessingAlgorithm):
"""
This is an example algorithm that takes a vector layer and
creates a new identical one.
It is meant to be used as an example of how to create your own
algorithms and explain methods and variables used to do it. An
algorithm like this will be available in all elements, and there
is not need for additional work.
All Processing algorithms should extend the QgsProcessingAlgorithm
class.
"""
# Constants used to refer to parameters and outputs. They will be
# used when calling the algorithm from another algorithm, or when
# calling from the QGIS console.
OUTPUT = 'OUTPUT'
INPUT = 'INPUT'
GRTYPE = 'GRYPE'
PRECISIONS = 'PRECISIONS'
PREFIX = 'PREFIX'
dGrType = [
{"name": "British National Grid", "code": "os", "crs": QgsCoordinateReferenceSystem("EPSG:27700")},
{"name": "Irish National Grid", "code": "irish", "crs": QgsCoordinateReferenceSystem("EPSG:29903")}
]
aGrTypeName = list(map((lambda x: x["name"]), dGrType))
dPrecisions = [
{"text": "10 figure GR (1 m)", "num": 1, "field": "10figGR"},
{"text": "8 figure GR (10 m)", "num": 10, "field": "8figGR"},
{"text": "6 figure GR (100 m)", "num": 100, "field": "6figGR"},
{"text": "Monad (1 km)", "num": 1000, "field": "monad"},
{"text": "Tetrad (2 km)", "num": 2000, "field": "tetrad"},
{"text": "Quadrant (5 km)", "num": 5000, "field": "quadrant"},
{"text": "Hectad (10 km)", "num": 10000, "field": "hectad"},
{"text": "100 km", "num": 100000, "field": "100km"},
{"text": "Easting/northings", "num": -1, "field": "Easting Northing"},
{"text": "Lat/lng (WGS84)", "num": -2, "field": "Lat Lng"}
]
aPrecisionText = list(map((lambda x: x["text"]), dPrecisions))
# Get a reference to an osgr object
osgr = osgr.osgr()
def logMessage(self, message):
QgsMessageLog.logMessage(message, "Add Grid Ref Algorithm")
def initAlgorithm(self, config):
"""
Here we define the inputs and output of the algorithm, along
with some other properties.
"""
# We add the input vector features source. It can have any kind of
# geometry.
self.addParameter(
QgsProcessingParameterFeatureSource(
self.INPUT,
self.tr('Input layer'),
[QgsProcessing.TypeVectorAnyGeometry]
)
)
# Parameter for selecting British or Irish Grid
self.addParameter(
QgsProcessingParameterEnum(
self.GRTYPE,
self.tr('Select British or Irish National Grid'),
self.aGrTypeName,
False # Single select
)
)
# Parameter for selecting grid reference precisions
# Note that the multi-select does not work in the Modeller - https://issues.qgis.org/issues/20406
self.addParameter(
QgsProcessingParameterEnum(
self.PRECISIONS,
self.tr('Select the type of Grid References to add'),
self.aPrecisionText,
True # Multi select
)
)
# Parameter for prefixing field name
self.addParameter(
QgsProcessingParameterString(
self.PREFIX,
self.tr('Optionally, indicate a short prefix for output column names'),
None, # No default value
False, # Not multi-line
True # Optional
)
)
# We add a feature sink in which to store our processed features (this
# usually takes the form of a newly created vector layer when the
# algorithm is run in QGIS).
self.addParameter(
QgsProcessingParameterFeatureSink(
self.OUTPUT,
self.tr('Output layer')
)
)
def processAlgorithm(self, parameters, context, feedback):
"""
Here is where the processing itself takes place.
"""
feedback.pushInfo("Starting processing algo")
# Retrieve the feature source.
source = self.parameterAsSource(parameters, self.INPUT, context)
fields = source.fields()
# Get the field prefix
prefix = self.parameterAsString (parameters, self.PREFIX, context)
prefix = prefix.replace(" ", "")
# Get the precision choices and make the appropriate output fields
precisions = self.parameterAsEnums (parameters, self.PRECISIONS, context)
for p in precisions:
if self.dPrecisions[p]["num"] > 0:
fieldName = prefix + self.dPrecisions[p]["field"]
fields.append(QgsField(fieldName, QVariant.String))
elif self.dPrecisions[p]["num"] < 0: #Easting/northing (-1) or Lat/lng (-2)
if self.dPrecisions[p]["num"] == -1:
dataType = QVariant.Int
else:
dataType = QVariant.Double
fieldName = self.dPrecisions[p]["field"].split(" ")
fieldNameX = prefix + fieldName[0]
fields.append( QgsField(fieldNameX, dataType))
fieldNameY = prefix + fieldName[1]
fields.append(QgsField(fieldNameY, dataType))
# Create the feature sink. The 'dest_id' variable is used
# to uniquely identify the feature sink, and must be included in the
# dictionary returned by the processAlgorithm function.
(sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT,
context, fields, source.wkbType(), source.sourceCrs())
# Get the other parameters
grtype = self.parameterAsEnum (parameters, self.GRTYPE, context)
transform = None
if self.dGrType[grtype]["crs"] != source.sourceCrs():
transform = QgsCoordinateTransform(source.sourceCrs(), self.dGrType[grtype]["crs"], QgsProject.instance())
transformWGS84 = QgsCoordinateTransform(self.dGrType[grtype]["crs"], QgsCoordinateReferenceSystem("EPSG:4326"), QgsProject.instance())
# Compute the number of steps to display within the progress bar and
# get features from source
total = 100.0 / source.featureCount() if source.featureCount() else 0
features = source.getFeatures()
for current, feature in enumerate(features):
# Stop the algorithm if cancel button has been clicked
if feedback.isCanceled():
break
# Add grid references in here
geom = feature.geometry()
if transform is not None:
geom.transform(transform)
pt = geom.centroid().asPoint()
# Add a feature in the sink
newFeature = QgsFeature()
newFeature.setGeometry(feature.geometry())
newFeature.setFields(fields)
# Copy current field values
for field in source.fields():
newFeature[field.name()] = feature.attribute(field.name())
# Generate new field values
for p in precisions:
if self.dPrecisions[p]["num"] > 0:
gr = self.osgr.grFromEN(pt.x(), pt.y(), self.dPrecisions[p]["num"], self.dGrType[grtype]["code"])
if gr == "na":
gr = ""
newFeature[prefix + self.dPrecisions[p]["field"]] = gr
elif self.dPrecisions[p]["num"] < 0: #Easting/northing (-1) or Lat/lng (-2)
fieldName = self.dPrecisions[p]["field"].split(" ")
if self.dPrecisions[p]["num"] == -1:
x = int(pt.x())
y = int(pt.y())
fieldNameX = prefix + fieldName[0]
fieldNameY = prefix + fieldName[1]
else:
wgs84Point = transformWGS84.transform(pt)
x = wgs84Point.x()
y = wgs84Point.y()
fieldNameX = prefix + fieldName[1]
fieldNameY = prefix + fieldName[0]
newFeature[fieldNameX] = x
newFeature[fieldNameY] = y
sink.addFeature(newFeature, QgsFeatureSink.FastInsert)
# Update the progress bar
feedback.setProgress(int(current * total))
# Return the results of the algorithm. In this case our only result is
# the feature sink which contains the processed features, but some
# algorithms may return multiple feature sinks, calculated numeric
# statistics, etc. These should all be included in the returned
# dictionary, with keys matching the feature corresponding parameter
# or output names.
return {self.OUTPUT: dest_id}
def name(self):
"""
Returns the algorithm name, used for identifying the algorithm. This
string should be fixed for the algorithm, and must not be localised.
The name should be unique within each provider. Names should contain
lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return 'Add GRs to layers'
def displayName(self):
"""
Returns the translated algorithm name, which should be used for any
user-visible display of the algorithm name.
"""
return self.tr(self.name())
def group(self):
"""
Returns the name of the group this algorithm belongs to. This string
should be localised.
"""
return self.tr(self.groupId())
def groupId(self):
"""
Returns the unique ID of the group this algorithm belongs to. This
string should be fixed for the algorithm, and must not be localised.
The group id should be unique within each provider. Group id should
contain lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
#return 'Grid references'
return None
def tr(self, string):
return QCoreApplication.translate('Processing', string)
def createInstance(self):
return AddGridRefAlgorithm()