-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathAdjointGradientNR2d.m
executable file
·218 lines (146 loc) · 8 KB
/
AdjointGradientNR2d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
function [UserVar,dJdC,dJdAGlen,ub,vb,ud,vd,uAdjoint,vAdjoint,dIdCreg,dIdAGlenreg,dIdCdata,dIdAGlendata,dIdCbarrier,dIdAGlenbarrier,lambdaAdjoint]=...
AdjointGradientNR2d(...
UserVar,CtrlVar,MUA,BCs,BCsAdjoint,s,b,h,S,B,ub,vb,ud,vd,uvAdjoint,AGlen,C,n,m,alpha,rho,rhow,g,GF,Priors,Meas)
nargoutchk(16,16)
narginchk(26,26)
if CtrlVar.AGlenisElementBased
dIdAGlendata=zeros(MUA.Nele,1) ;
else
dIdAGlendata=zeros(MUA.Nnodes,1);
end
if CtrlVar.CisElementBased
dIdCdata=zeros(MUA.Nele,1);
else
dIdCdata=zeros(MUA.Nnodes,1);
end
%% Step 1: solve linearized forward problem
%[ub,vb,ud,vd,l,Kuv,Ruv,RunInfo]= uv(CtrlVar,MUA,BCs,s,b,h,S,B,ub,vb,ud,vd,l,AGlen,C,n,m,alpha,rho,rhow,g,GF);
[UserVar,ub,vb,ud,vd,uvAdjoint,Kuv,Ruv,RunInfo,ubvbL]=uv(UserVar,CtrlVar,MUA,BCs,s,b,h,S,B,ub,vb,ud,vd,uvAdjoint,AGlen,C,n,m,alpha,rho,rhow,g,GF);
%% Step 2: Solve adjoint equation, i.e. K l=-r
% fprintf(' Solve adjoint problem \n ')
% I need to impose boundary conditions on lx and ly
% if the problem is (fully) adjoint I have exactly the same BC
% I need to solve
%
% [Kxu Kxv Luv'] [lx] = [ u-uMeas ]
% [Kyu Kyv ] [ly] = [ v-vMeas ]
% [ Luv 0] [lambdauv] [ Luvrhs ]
% All matrices are Nnodes x Nnodes, apart from:
% Luv is #uv constraints x 2 Nnodes
% forming right-hand side of the adjoint equations
[J,Idata,IRegC,IRegAGlen,dIduv,IBarrierC,IBarrierAGlen]=MisfitFunction(UserVar,CtrlVar,MUA,ub,vb,ud,vd,AGlen,C,Priors,Meas);
rhs=dIduv(:);
MLC_Adjoint=BCs2MLC(CtrlVar,MUA,BCsAdjoint);
LAdjoint=MLC_Adjoint.ubvbL;
LAdjointrhs=MLC_Adjoint.ubvbRhs;
lambdaAdjoint=zeros(numel(LAdjointrhs),1) ;
[uvAdjoint,lambdaAdjoint]=solveKApeSymmetric(Kuv,LAdjoint,rhs,LAdjointrhs,[],lambdaAdjoint,CtrlVar);
if ~isreal(uvAdjoint)
save TestSave ; error('When solving adjoint equation Lagrange parmeters complex ')
end
uAdjoint=real(uvAdjoint(1:MUA.Nnodes)) ; vAdjoint=real(uvAdjoint(MUA.Nnodes+1:2*MUA.Nnodes));
if CtrlVar.InfoLevelAdjoint>=1000 && CtrlVar.doplots
GLgeo=GLgeometry(MUA.connectivity,MUA.coordinates,GF,CtrlVar);
tri=MUA.connectivity;
figure
hold off
subplot(2,2,1)
[FigHandle,ColorbarHandel,tri]=PlotNodalBasedQuantities(tri,MUA.coordinates,dIduv(1:length(ub)),CtrlVar); title('dIdu')
hold on ; plot(GLgeo(:,[3 4])'/CtrlVar.PlotXYscale,GLgeo(:,[5 6])'/CtrlVar.PlotXYscale,'r','LineWidth',2)
subplot(2,2,2)
[FigHandle,ColorbarHandel,tri]=PlotNodalBasedQuantities(tri,MUA.coordinates,dIduv(1+length(ub):end),CtrlVar); title('dIdv')
hold on ; plot(GLgeo(:,[3 4])'/CtrlVar.PlotXYscale,GLgeo(:,[5 6])'/CtrlVar.PlotXYscale,'r','LineWidth',2)
subplot(2,2,3)
[FigHandle,ColorbarHandel,tri]=PlotNodalBasedQuantities(tri,MUA.coordinates,uAdjoint,CtrlVar); title('lx')
hold on ; plot(GLgeo(:,[3 4])'/CtrlVar.PlotXYscale,GLgeo(:,[5 6])'/CtrlVar.PlotXYscale,'r','LineWidth',2)
subplot(2,2,4)
[FigHandle,ColorbarHandel,tri]=PlotNodalBasedQuantities(tri,MUA.coordinates,vAdjoint,CtrlVar); title('ly')
hold on ; plot(GLgeo(:,[3 4])'/CtrlVar.PlotXYscale,GLgeo(:,[5 6])'/CtrlVar.PlotXYscale,'r','LineWidth',2)
end
switch upper(CtrlVar.AdjointGrad)
case 'C'
switch lower(CtrlVar.AdjointGradientEvaluation)
case 'discrete' % Direct gradient evaluated from nodal points.
if CtrlVar.CisElementBased
M= Ele2Nodes(MUA.connectivity,MUA.Nnodes);
Cnode=M*C;
else
Cnode=C;
end
dIdCdata = -(1/m)*GF.node.*(Cnode+CtrlVar.CAdjointZero).^(-1/m-1).*(sqrt(ub.*ub+vb.*vb+CtrlVar.SpeedZero^2)).^(1/m-1).*(u.*uAdjoint+v.*vAdjoint);
if CtrlVar.CisElementBased
dIdCdata=Nodes2EleMean(MUA.connectivity,dIdCdata);
end
case 'integral'
if CtrlVar.CisElementBased
dIdCdata=dIdCqEleSteps(CtrlVar,MUA,uAdjoint,vAdjoint,s,b,h,S,B,ub,vb,ud,vd,AGlen,n,C,m,rho,rhow,alpha,g,GF);
else
dIdCdata=dIdCq(CtrlVar,MUA,uAdjoint,vAdjoint,s,b,h,S,B,ub,vb,ud,vd,AGlen,n,C,m,rho,rhow,alpha,g,GF);
end
otherwise
error(' what case ? ' )
end
case 'A'
switch lower(CtrlVar.AdjointGradientEvaluation)
case 'discrete' % Direct gradient evaluated from nodal points.
fprintf(' CtrlVar.AdjointGradientEvaluation=''uvdiscrete'' not possible in a combination with AGlen inverstion\n')
error('AdjointGradientNR2d:DiscreteAdjointAGlen','Discrete case not implemented. Used integral evaluation instead.')
case 'integral'
if CtrlVar.AGlenisElementBased
dIdAGlendata=dIdAEleSteps(CtrlVar,MUA,uAdjoint,vAdjoint,s,b,h,S,B,ub,vb,ud,vd,AGlen,n,C,m,rho,rhow,alpha,g,GF);
else
dIdAGlendata=dIdAq(CtrlVar,MUA,uAdjoint,vAdjoint,s,b,h,S,B,ub,vb,ud,vd,AGlen,n,C,m,rho,rhow,alpha,g,GF);
end
otherwise
error(' what case ? ' )
end
end
%% calc gradients of regularisation and penalty terms
dIdCreg=Calc_dIregdC(CtrlVar,MUA,Priors.CovC,C,Priors.C);
dIdAGlenreg=Calc_dIregdAGlen(CtrlVar,MUA,Priors.CovAGlen,AGlen,Priors.AGlen);
dIdCbarrier=Calc_dIdCbarrier(CtrlVar,MUA,C);
dIdAGlenbarrier=Calc_dIdAGlenbarrier(CtrlVar,MUA,AGlen);
%% scalings
dIdCdata=CtrlVar.MisfitMultiplier*dIdCdata/CtrlVar.AdjointfScale;
dIdCreg=dIdCreg/CtrlVar.AdjointfScale;
dIdCbarrier=dIdCbarrier/CtrlVar.AdjointfScale;
dIdAGlendata=CtrlVar.MisfitMultiplier*dIdAGlendata/CtrlVar.AdjointfScale;
dIdAGlenreg=dIdAGlenreg/CtrlVar.AdjointfScale;
dIdAGlenbarrier=dIdAGlenbarrier/CtrlVar.AdjointfScale;
%% adding it all up
dJdC=dIdCdata+dIdCreg+dIdCbarrier;
dJdAGlen=dIdAGlendata+dIdAGlenreg+dIdAGlenbarrier;
if any(isnan(dJdC)) ; save TestSave ; error('NaN in dJdC') ; end
if any(isnan(dJdAGlen)) ; save TestSave ; error('NaN in dJdAGlen') ; end
if ~isreal(dJdC) ; save TestSave ; error('dJdC complex') ;end
if ~isreal(dJdAGlen) ; save TestSave ; error('dJdAGlen complex') ;end
%dJdC=real(dJdC);
%dJdAGlen=real(dJdAGlen);
if CtrlVar.InfoLevelAdjoint>=1000 && CtrlVar.doplots
if ~isempty(strfind(CtrlVar.AdjointGrad,'C'))
figure
hold off
subplot(2,2,1)
%PlotElementBasedQuantities(MUA.connectivity,MUA.coordinates,dIdCdata,CtrlVar) ;
PlotMeshScalarVariable(CtrlVar,MUA,dIdCdata);
title('dIdCdata')
hold on ; plot(GLgeo(:,[3 4])'/CtrlVar.PlotXYscale,GLgeo(:,[5 6])'/CtrlVar.PlotXYscale,'r','LineWidth',2)
subplot(2,2,2)
%PlotElementBasedQuantities(MUA.connectivity,MUA.coordinates,dIdCreg,CtrlVar) ;
PlotMeshScalarVariable(CtrlVar,MUA,dIdCreg);
title('dIregdC')
hold on ; plot(GLgeo(:,[3 4])'/CtrlVar.PlotXYscale,GLgeo(:,[5 6])'/CtrlVar.PlotXYscale,'r','LineWidth',2)
subplot(2,2,3)
%PlotElementBasedQuantities(MUA.connectivity,MUA.coordinates,dIdCbarrier,CtrlVar) ;
PlotMeshScalarVariable(CtrlVar,MUA,dIdCbarrier);
title('dIdCbarrier')
hold on ; plot(GLgeo(:,[3 4])'/CtrlVar.PlotXYscale,GLgeo(:,[5 6])'/CtrlVar.PlotXYscale,'r','LineWidth',2)
subplot(2,2,4)
%PlotElementBasedQuantities(MUA.connectivity,MUA.coordinates,dJdC,CtrlVar) ;
PlotMeshScalarVariable(CtrlVar,MUA,dJdC);
title('dJdC')
hold on ; plot(GLgeo(:,[3 4])'/CtrlVar.PlotXYscale,GLgeo(:,[5 6])'/CtrlVar.PlotXYscale,'r','LineWidth',2)
end
end
return
%%