-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworkers.py
303 lines (249 loc) · 13.5 KB
/
workers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import os
import uuid
import logging
import tempfile
import contextlib
import humanfriendly
from enum import Enum
from threading import Thread, Event
from pickle_training import pack_arguments_to_pickle, unpack_base64_pickle
from gcloud import get_instance, ssh_connection, get_instance_external_ip, \
get_instance_internal_ip, SSH_USER
from training import execute_episode, evaluate_neural_network, \
duel_between_neural_networks
class WorkType:
EXECUTE_EPISODE = 'Execute Episode'
DUEL_BETWEEN_NEURAL_NETWORKS = 'Duel between Neural Networks'
EVALUATE_NEURAL_NETWORK = 'Evaluate Neural Network'
class Worker:
def __init__(self):
self._executor_thread = None
self._results = None
self._worker_manager = None
def setup(self, work_type, iterations, *args, **kwargs):
pass
def run(self, work_type, iterations, *args, **kwargs):
self._results = []
self._executor_thread = Thread(name=self.get_executor_thread_name(), target=self._run,
args=(work_type, iterations, args, kwargs))
self._executor_thread.start()
def execute_episode(self, *args, **kwargs):
raise NotImplementedError
def duel_between_neural_networks(self, *args, **kwargs):
raise NotImplementedError
def evaluate_neural_network(self, *args, **kwargs):
raise NotImplementedError
def teardown(self, work_type):
pass
def wait(self):
return self._executor_thread.join() if self._executor_thread else None
def get_results(self):
return self._results
def _run(self, work_type, iterations, args, kwargs):
target = self.get_target(work_type)
self.setup(work_type, iterations, *args, *kwargs)
for i in range(1, iterations + 1):
logging.info(f'Task {work_type} ({i}/{iterations}): Starting...')
result = target(*args, **kwargs)
self._results.append(result)
logging.info(f'Task {work_type} ({i}/{iterations}): Finished!')
self.teardown(work_type)
def get_executor_thread_name(self):
id_ = uuid.uuid4()
id_ = str(id_).split('-', 1)[0]
return f'{self.__class__.__name__}-{id_}'
def get_target(self, work_type):
if work_type is WorkType.EXECUTE_EPISODE:
return self.execute_episode
elif work_type is WorkType.DUEL_BETWEEN_NEURAL_NETWORKS:
return self.duel_between_neural_networks
elif work_type is WorkType.EVALUATE_NEURAL_NETWORK:
return self.evaluate_neural_network
raise TypeError('expecting WorkType object')
class ThreadWorker(Worker):
def execute_episode(self, *args, **kwargs):
return execute_episode(*args, **kwargs)
def evaluate_neural_network(self, *args, **kwargs):
return evaluate_neural_network(*args, **kwargs)
def duel_between_neural_networks(self, *args, **kwargs):
return duel_between_neural_networks(*args, **kwargs)
class GoogleCloudWorker(Worker):
SSH_PRIV_KEY = f'/home/{SSH_USER}/.ssh/{SSH_USER}-internal'
SSH_PUB_KEY = f'{SSH_PRIV_KEY}.pub'
def __init__(self, compute, project, zone, instance_name, key_filename):
instance = get_instance(compute, project, zone, instance_name)
if not instance:
raise RuntimeError(f'Instance {instance_name} not found')
self._instance = instance
self._key_filename = key_filename
self._internal_ssh_pub_key = None
self._neural_network_weights_file = []
self._ssh = None
self._sftp = None
def setup(self, work_type, iterations, *args, **kwargs):
pass
def execute_episode(self, board_size, neural_network, degree_exploration,
num_simulations, policy_temperature, e_greedy):
args = [board_size, self._neural_network_weights_file[0], degree_exploration,
num_simulations, policy_temperature, e_greedy]
training_examples = self._remote_pickle_training_call('execute_episode', args)
return training_examples
def evaluate_neural_network(self, board_size, total_iterations, neural_network, num_simulations, degree_exploration,
agent_class, agent_arguments):
args = [board_size, total_iterations, self._neural_network_weights_file[0],
num_simulations, degree_exploration, agent_class, agent_arguments]
net_wins = self._remote_pickle_training_call('evaluate_neural_network', args)
return net_wins
def duel_between_neural_networks(self, board_size, neural_network_1, neural_network_2,
degree_exploration, num_simulations):
args = [board_size, self._neural_network_weights_file[0],
self._neural_network_weights_file[1], degree_exploration, num_simulations]
net_wins = self._remote_pickle_training_call('duel_between_neural_networks', args)
return net_wins
def teardown(self, work_type):
logging.info(f'Task {work_type} Teardown: Deleting cache files...')
if self._neural_network_weights_file:
self._sftp = self._ssh.open_sftp()
for filepath in self._neural_network_weights_file:
self._sftp.remove(filepath)
self._ssh.close()
self._ssh = None
self._sftp = None
self._neural_network_weights_file = []
def _remote_pickle_training_call(self, command_name, args):
args = pack_arguments_to_pickle(*args)
command = 'docker run -v $PWD:/OthelloZero -v /tmp/:/tmp:ro igorxp5/othello-zero '
command += f'OthelloZero/pickle_training.py {command_name} {" ".join(args)}'
stdin, stdout, stderr = self._ssh.exec_command(command)
stdout.channel.recv_exit_status()
if stdout.channel.recv_exit_status() != 0:
error = stderr.read().decode()
logging.info(error)
raise RuntimeError(error)
return unpack_base64_pickle(stdout.readlines()[0].strip())
class WorkerManager:
def __init__(self):
self._workers = []
self._waiter_thread = None
self._finished_event = Event()
def run(self, work_type, iterations, *args, **kwargs):
if isinstance(work_type, WorkType):
raise TypeError('expecting WorkerType object')
self._finished_event.clear()
worker_iterations = WorkerManager.divide_iterations(iterations, len(self._workers))
self._setup(work_type, iterations, *args, **kwargs)
for worker, total_iterations in zip(self._workers, worker_iterations):
worker.run(work_type, total_iterations, *args, **kwargs)
self._waiter_thread = Thread(target=self._wait_workers)
self._waiter_thread.start()
self._finished_event.wait()
def get_results(self):
results = []
for worker in self._workers:
results.extend(worker.get_results())
return results
def add_worker(self, worker):
if not isinstance(worker, Worker):
raise TypeError('expecting Worker object')
worker._worker_manager = self
self._workers.append(worker)
def total_workers(self):
return len(self._workers)
def _wait_workers(self):
for worker in self._workers:
worker.wait()
self._finished_event.set()
def has_google_worker(self):
return any(isinstance(worker, GoogleCloudWorker) for worker in self._workers)
def _setup(self, work_type, iterations, *args, **kwargs):
files_to_send = []
if work_type is WorkType.EXECUTE_EPISODE and self.has_google_worker():
_, filepath = tempfile.mkstemp(suffix='.h5')
neural_network = args[1]
neural_network.save_checkpoint(filepath)
files_to_send.append(filepath)
elif work_type is WorkType.EVALUATE_NEURAL_NETWORK and self.has_google_worker():
_, filepath = tempfile.mkstemp(suffix='.h5')
neural_network = args[2]
neural_network.save_checkpoint(filepath)
files_to_send.append(filepath)
elif work_type is WorkType.DUEL_BETWEEN_NEURAL_NETWORKS and self.has_google_worker():
_, filepath = tempfile.mkstemp(suffix='.h5')
neural_network_1 = args[1]
neural_network_1.save_checkpoint(filepath)
files_to_send.append(filepath)
_, filepath = tempfile.mkstemp(suffix='.h5')
neural_network_2 = args[2]
neural_network_2.save_checkpoint(filepath)
files_to_send.append(filepath)
if self.has_google_worker():
for filepath in files_to_send:
file_size = humanfriendly.format_size(os.path.getsize(filepath))
scp_processes = []
uploaded_worker = None
for worker in self._workers:
if isinstance(worker, GoogleCloudWorker):
worker._neural_network_weights_file.append(filepath)
ip = get_instance_external_ip(worker._instance)
worker._ssh = ssh_connection(ip, worker._key_filename)
if not uploaded_worker:
worker._sftp = worker._ssh.open_sftp()
logging.info(f'Uploading Neural network weights ({file_size})...')
worker._sftp.put(filepath, filepath)
logging.info(f'Neural network weights uploaded')
os.remove(filepath)
if not worker._internal_ssh_pub_key:
try:
worker._sftp.stat(worker.SSH_PRIV_KEY)
except IOError:
logging.info(f'Creating Internal SSH Key...')
command = f'ssh-keygen -q -N "" -t rsa -f {worker.SSH_PRIV_KEY} -C {SSH_USER}'
stdin, stdout, stderr = worker._ssh.exec_command(command)
if stdout.channel.recv_exit_status() != 0:
raise RuntimeError('cannot create internal ssh key')
logging.info(f'Internal SSH Key created successfully!')
logging.info(f'Saving SSH Public Key...')
with worker._sftp.open(worker.SSH_PUB_KEY) as file:
worker._internal_ssh_pub_key = file.read().decode('ascii')
logging.info(f'SSH Public Key saved!')
worker._sftp.close()
uploaded_worker = worker
for worker in self._workers:
if isinstance(worker, GoogleCloudWorker) and uploaded_worker and uploaded_worker is not worker:
instance_name = worker._instance['name']
if not worker._internal_ssh_pub_key:
logging.info(f'Adding SSH Key to {instance_name}...')
worker._sftp = worker._ssh.open_sftp()
try:
worker._sftp.stat(worker.SSH_PUB_KEY)
except IOError:
command = f'echo "{uploaded_worker._internal_ssh_pub_key}" > {worker.SSH_PUB_KEY}'
stdin, stdout, stderr = worker._ssh.exec_command(command)
if stdout.channel.recv_exit_status() != 0:
logging.error(stderr.read().decode())
raise RuntimeError(f'cannot write pub key into {instance_name}')
command = f'cat {worker.SSH_PUB_KEY} >> /home/{SSH_USER}/.ssh/authorized_keys'
stdin, stdout, stderr = worker._ssh.exec_command(command)
if stdout.channel.recv_exit_status() != 0:
logging.error(stderr.read().decode())
raise RuntimeError(f'cannot add key to authorized_keys')
finally:
worker._sftp.close()
worker._internal_ssh_pub_key = uploaded_worker._internal_ssh_pub_key
logging.info(f'SSH Key added to {instance_name}!')
ip = get_instance_internal_ip(worker._instance)
logging.info(f'Sending Neural network weights to instance: {instance_name}')
scp_process = uploaded_worker._ssh.exec_command(f'scp -i {uploaded_worker.SSH_PRIV_KEY} {filepath} {ip}:{filepath}')
scp_processes.append(scp_process)
logging.info(f'Waiting for neural networks be transfered...')
for sdtin, stdout, stderr in scp_processes:
if stdout.channel.recv_exit_status() != 0:
logging.error(stderr.read().decode())
raise RuntimeError('something wrong happepend during file transfer')
logging.info(f'Neural network weights uploaded successfully')
@staticmethod
def divide_iterations(total_iterations, total_workers):
worker_total_iterations = [0] * total_iterations
for i in range(total_iterations):
worker_total_iterations[i % total_workers] += 1
return worker_total_iterations