forked from NOAA-EMC/NCEPLIBS-ip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.iplib
494 lines (456 loc) · 19.8 KB
/
README.iplib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
Documentation of the general interpolation library iplib January, 2014
--------------------------------------------------------------------------------
I. Introduction
The NCEP general interpolation library (iplib) contains Fortran 90 subprograms
to be used for interpolating between nearly all grids used at NCEP.
The library is particularly efficient when interpolating many fields at one time.
The library has been extensively tested with AIX and Intel Fortran compilers.
There are currently six interpolation methods available in the library:
bilinear, bicubic, neighbor, budget, spectral and neighbor-budget.
Some of the methods have interpolation sub-options. A few methods
have restrictions on the type of input or output grids.
Also, several methods can perform interpolation on fields with bitmaps
(i.e. some points on the input grid may be undefined). In this case,
the bitmap is interpolated to the output grid. Only valid input points
are used to interpolate to valid output points. An output bitmap will also be
created to locate invalid data where the output grid extends outside the domain
of the input grid.
The driver routine for interpolating scalars is ipolates, while the routine
for interpolating vectors is ipolatv. The interpolation method is chosen
via the first argument of these routines (variable IP). Sub-options are
set via the IPOPT array.
Bilinear interpolation is chosen by setting IP=0. This method has two
sub-options. (1) The percent of valid input data required to make output
data (the default is 50%). (2) If valid input data is not found near an
a spiral search may be performed. The spiral search is only
an option for scalar data. The bilinear method also has no restrictions
and can interpolate with bitmaps.
Bicubic interpolation is chosen by setting IP=1. This method has two sub-options,
(1) A monotonic constraint option for straight bicubic or
for constraining the output value to be within the range of the four
surrounding input values. (2) The percent of valid input data
required to make output data, which defaults to 50%. Note: the bicubic method
cannot interpolate data with bitmaps.
Neighbor interpolation is chosen by setting IP=2. Neighbor interpolation
means that the output value is set to the nearest input value. It would be
appropriate for interpolating integer fields such as vegetation index.
This method has one sub-option: If valid input data is not found near an
an output point, a spiral search is optionally performed. The neighbor
method has no restrictions and can interpolate with bitmaps.
Budget interpolation is chosen by setting IP=3. Budget interpolation
means a low-order interpolation method that quasi-conserves area averages.
It would be appropriate for interpolating budget fields such as precipitation.
This method assumes that the field really represents box averages where each
box extends halfway to its neighboring grid point in each direction.
The method actually averages bilinearly interpolated values in a square array
of points distributed within each output grid box. This method can
interpolate data with bitmaps. There are several sub-options:
(1) The number of points in the radius of the square array may be set.
The default is 2, meaning that 25 sample points will be averaged
for each output value.
(2) The respective averaging weights for the radius points are adjustable.
The default is for all weights equal to 1, giving an unweighted average.
(3) Optionally, one may assume the boxes stretch nearly all the way to each of
the neighboring grid points and the weights are the adjoint of the bilinear
interpolation weights.
(4) The percent of valid input data required to make output data is
adjustable. The default is 50%.
(5) In cases where there is no or insufficient valid input data,
a spiral search may be invoked to search for the nearest valid data.
search squre (scalar interpolation only).
Spectral interpolation is chosen by setting IP=4. This method has two sub-options,
to (1) set the spectral shape (triangular or rhomboidal) and (2) set the
spectral truncation. The input grid must be a global cylindrical grid
(either Gaussian or equidistant). This method cannot interpolate data
with bitmaps. Unless the output grid is a global cylindrical
grid, a polar stereographic grid centered at the pole, or a Mercator grid,
this method can be quite expensive.
Neighbor-budget interpolation is chosen by setting IP=6. This method
computes weighted averages of neighbor points arranged in a square box
centered around each output grid point and stretching nearly halfway
to each of the neighboring grid points. The main difference with
the budget interpolation (IP=3) is neighbor vs bilinear interpolation
of the square box of points. There are the following sub-options:
(1) The number of points in the radius of the square array may be set.
The default is 2, meaning that 25 sample points will be averaged
for each output value.
(2) The respective averaging weights for the radius points are adjustable.
The default is for all weights equal to 1, giving an unweighted average.
(3) The percent of valid input data required to make output data is
adjustable. The default is 50%.
The library can handle two-dimensional vector fields as well as scalar fields.
The input and output vectors are rotated if necessary so that they are
either resolved relative to their defined grid in the direction of
increasing x and y coordinates or resolved relative to eastward and northward
directions on the earth. The rotation is determined by the grid definitions.
Vectors are generally interpolated (by all methods but spectral interpolation)
by moving the relevant input vectors along a great circle to the output point,
keeping their orientations with respect to the great circle constant, before
independently interpolating the respective components. This ensures that vector
interpolation will be consistent over the whole globe including the poles.
The input and output grids are defined by their respective GRIB grid description
sections (GDS) passed in integer form KGDS as decoded by subprogram w3fi63
in w3ncolib or by subprogram makgds in this library. That is, the interpolation
subprograms can readily interpolate from a GRIB field that is unpacked
by subprogram w3fi63; the interpolation subprograms can also readily
interpolate to an NCEP pre-defined grid that is expanded into KGDS form by
subprogram makgds (which in turn calls w3fi71). There are currently seven grid
projections recognized in the library. The projections are respectively
equidistant cylindrical (KGDS(1)=000), Mercator cylindrical (KGDS(1)=001),
Lambert conformal conical (KGDS(1)=003), Gaussian cylindrical (KGDS(1)=004),
polar stereographic azimuthal (KGDS(1)=005), semi-staggered "E" grid
on rotated equidistant cyclindrical (KGDS(1)=203), and non-staggered
grid on rotated equidistant cyclindrical grid (KGDS(1)=205).
If the output data representation type is negative (KGDSO(1)<0), then the
output data may be just a set of station points. In this case, the user must pass
the number of points to be output along with their latitudes and longitudes.
For vector interpolation, the vector rotations parameters must also be passed.
On the other hand, for non-negative output data representation types,
the number of output grid points and their latitudes and longitudes
(and the vector rotation parameters for vector interpolation) are all
returned by the interpolation subprograms.
If an output equidistant cylindrical grid contains multiple pole points, then
the pole points are forced to be self-consistent. That is, scalar fields
are obliged to be constant at the pole and vector components are obliged
to exhibit a wavenumber one variation at the pole.
Generally, only regular grids can be interpolated in this library. However,
the thinned WAFS grids and the staggered eta grids can be interpolated by using
transform subprograms (ipxwafs and ipxetas, respectively) in this library that
will either expand the irregular grid to a regular grid or contract a regular
grid to an irregular grid as necessary.
The return code issued by an interpolation subprogram determines whether
it ran successfully or how it failed. Check nonzero return codes
against the docblock of the respective subprogram.
Developers are encouraged to create additional interpolation methods or
to create additional map projection "wizards" for iplib.
Questions may be directed to: NCEP.List.EMC.nceplibs.Developers@noaa.gov
II. Entry point list
Name Function
---- ------------------------------------------------------------------
Scalar field interpolation subprograms
IPOLATES IREDELL'S POLATE FOR SCALAR FIELDS
POLATES0 INTERPOLATE SCALAR FIELDS (BILINEAR)
POLATES1 INTERPOLATE SCALAR FIELDS (BICUBIC)
POLATES2 INTERPOLATE SCALAR FIELDS (NEIGHBOR)
POLATES3 INTERPOLATE SCALAR FIELDS (BUDGET)
POLATES4 INTERPOLATE SCALAR FIELDS (SPECTRAL)
POLATES6 INTERPOLATE SCALAR FIELDS (NEIGHBOR-BUDGET)
POLFIXS MAKE MULTIPLE POLE SCALAR VALUES CONSISTENT
Vector field interpolation subprograms
IPOLATEV IREDELL'S POLATE FOR VECTOR FIELDS
POLATEV0 INTERPOLATE VECTOR FIELDS (BILINEAR)
POLATEV1 INTERPOLATE VECTOR FIELDS (BICUBIC)
POLATEV2 INTERPOLATE VECTOR FIELDS (NEIGHBOR)
POLATEV3 INTERPOLATE VECTOR FIELDS (BUDGET)
POLATEV4 INTERPOLATE VECTOR FIELDS (SPECTRAL)
POLATEV6 INTERPOLATE VECTOR FIELDS (NEIGHBOR-BUDGET)
MOVECT MOVE A VECTOR ALONG A GREAT CIRCLE
POLFIXV MAKE MULTIPLE POLE VECTOR VALUES CONSISTENT
Grid description section decoders
GDSWZD GRID DESCRIPTION SECTION WIZARD
GDSWZD_C 'C' WRAPPER FOR CALLING GDSWZD
GDSWZD00 GDS WIZARD FOR EQUIDISTANT CYCLINDRICAL
GDSWZD01 GDS WIZARD FOR MERCATOR CYCLINDRICAL
GDSWZD03 GDS WIZARD FOR LAMBERT CONFORMAL CONICAL
GDSWZD04 GDS WIZARD FOR GAUSSIAN CYCLINDRICAL
GDSWZD05 GDS WIZARD FOR POLAR STEREOGRAPHIC
GDSWZDCB GDS WIZARD FOR ROTATED EQUIDISTANT CYCLINDRICAL
"E" STAGGER.
GDSWZDCD GDS WIZARD FOR ROTATED EQUIDISTANT CYCLINDRICAL
NON "E" STAGGER.
GAUSSLAT COMPUTE GAUSSIAN LATITUDES
IJKGDS0/1 RETURN FIELD POSITION FOR A GIVEN GRID POINT
MAKGDS MAKE OR BREAK A GRID DESCRIPTION SECTION
Transform subprograms for special irregular grids
IPXWAFS/2/3 EXPAND OR CONTRACT WAFS GRIDS
III. How to inoke iplib: examples
Example 1. Interpolate from an arbitrary input grid (probably 1x1)
to NCEP grid 27 (65x65 northern polar stereographic).
Interpolate heights bilinearly and winds bicubically.
Interpolate soil moisture and precipitation using bitmaps
with the budget method. Encode the soil moisture bitmap in GRIB.
Subprograms GETGB and PUTGB from w3ncolib are referenced.
c example of using ipolate package.
c see documentation of ipolates and ipolatev
c for further possible options.
integer ipopt(20)
integer jpds(25),jgds(22),kpdsi(25),kgdsi(22),kpdso(25),kgdso(22)
parameter(ji=360*181,ig=27,jo=65*65,km=4)
real rlat(jo),rlon(jo),crot(jo),srot(jo)
integer ibi(km),ibo(km)
logical li(ji,km),lo(jo,km)
real hi(ji,km),ri(ji),ui(ji),vi(ji)
real ho(jo,km),ro(jo),uo(jo),vo(jo)
character gdso(42)
integer lev(km)
data lev/1000,500,250,100/
c define 65x65 grid
call makgds(ig,kgdso,gdso,lengds,iret)
if(iret.ne.0) call exit(iret)
kgdso(4)=-20826! fix w3fi71 error
print *,'kgdso=',kgdso
ipopt=0
c interpolate 4 levels of height to 65x65 bilinearly
do k=1,km
jpds=-1
jpds(5)=7
jpds(6)=100
jpds(7)=lev(k)
call getgb(11,31,ji,0,jpds,jgds,ki,kr,kpdsi,kgdsi,
& li(1,k),hi(1,k),iret)
if(iret.ne.0) call exit(iret)
call putgb(50,ki,kpdsi,kgdsi,li(1,k),hi(1,k),iret)
if(iret.ne.0) call exit(iret)
ibi(k)=mod(kpdsi(4)/64,2)
print *,'ibi(k)=',ibi(k)
enddo
call ipolates(0,ipopt,kgdsi,kgdso,ji,jo,km,ibi,li,hi,
& ko,rlat,rlon,ibo,lo,ho,iret)
if(iret.ne.0) call exit(iret)
kpdso=kpdsi
kpdso(3)=ig
do k=1,km
kpdso(7)=lev(k)
call putgb(51,ko,kpdso,kgdso,lo(1,k),ho(1,k),iret)
if(iret.ne.0) call exit(iret)
enddo
c interpolate precipitation to 65x65 with budget method
c (zero rain is masked out)
jpds=-1
jpds(5)=61
call getgb(11,31,ji,0,jpds,jgds,ki,kr,kpdsi,kgdsi,
& li,ri,iret)
if(iret.ne.0) call exit(iret)
call putgb(50,ki,kpdsi,kgdsi,li,ri,iret)
if(iret.ne.0) call exit(iret)
ipopt(1)=-1
ipopt(2)=-1
li(1:ki,1)=ri(1:ki).gt.0.
call ipolates(3,ipopt,kgdsi,kgdso,ji,jo,1,1,li,ri,
& ko,rlat,rlon,ibo,lo,ro,iret)
if(iret.ne.0) call exit(iret)
kpdso=kpdsi
kpdso(3)=ig
call putgb(51,ko,kpdso,kgdso,lo,ro,iret)
if(iret.ne.0) call exit(iret)
c interpolate soil moisture to 65x65 with budget method
jpds=-1
jpds(5)=144
jpds(6)=112
jpds(7)=10
call getgb(11,31,ji,0,jpds,jgds,ki,kr,kpdsi,kgdsi,
& li,ri,iret)
if(iret.ne.0) call exit(iret)
call putgb(50,ki,kpdsi,kgdsi,li,ri,iret)
if(iret.ne.0) call exit(iret)
ibi(1)=mod(kpdsi(4)/64,2)
ipopt(1)=-1
ipopt(2)=-1
call ipolates(3,ipopt,kgdsi,kgdso,ji,jo,1,ibi,li,ri,
& ko,rlat,rlon,ibo,lo,ro,iret)
if(iret.ne.0) call exit(iret)
kpdso=kpdsi
kpdso(3)=ig
kpdso(4)=128+64*ibo(1)
call putgb(51,ko,kpdso,kgdso,lo,ro,iret)
if(iret.ne.0) call exit(iret)
c interpolate 200 mb winds to 65x65 bicubically
jpds=-1
jpds(5)=33
jpds(6)=100
jpds(7)=200
call getgb(11,31,ji,0,jpds,jgds,ki,kr,kpdsi,kgdsi,
& li,ui,iret)
if(iret.ne.0) call exit(iret)
call putgb(50,ki,kpdsi,kgdsi,li,ui,iret)
if(iret.ne.0) call exit(iret)
jpds(5)=34
call getgb(11,31,ji,0,jpds,jgds,ki,kr,kpdsi,kgdsi,
& li,vi,iret)
if(iret.ne.0) call exit(iret)
call putgb(50,ki,kpdsi,kgdsi,li,vi,iret)
if(iret.ne.0) call exit(iret)
ipopt(1)=0
call ipolatev(1,ipopt,kgdsi,kgdso,ji,jo,1,0,li,ui,vi,
& ko,rlat,rlon,crot,srot,ibo,lo,uo,vo,iret)
if(iret.ne.0) call exit(iret)
kpdso=kpdsi
kpdso(3)=ig
kpdso(5)=33
call putgb(51,ko,kpdso,kgdso,lo,uo,iret)
if(iret.ne.0) call exit(iret)
kpdso(5)=34
call putgb(51,ko,kpdso,kgdso,lo,vo,iret)
if(iret.ne.0) call exit(iret)
stop
end
Example 2. Interpolate winds from an arbitrary input grid (probably 1x1)
to 4 station points while truncating spectrally to R30.
c read and unpack the 500 mb winds, truncate to R30,
c and interpolate to 4 corners of a box
integer ipopt(20)
integer jpds(25),jgds(22),kpdsi(25),kgdsi(22),kgdso(22)
parameter(jf=360*181,kp=4)
real rlat(kp),rlon(kp),crot(kp),srot(kp)
logical lgi(jf),lgo(kp)
real ui(jf),vi(jf),uo(kp),vo(kp)
jpds=-1
jpds(5)=33
jpds(6)=100
jpds(7)=500
call getgb(11,31,jf,0,jpds,jgds,kf,kr,kpdsi,kgdsi,
& lgi,ui,iret)
jpds(5)=34
call getgb(11,31,jf,0,jpds,jgds,kf,kr,kpdsi,kgdsi,
& lgi,vi,iret)
kgdso=-1
rlat(1)=20.
rlat(2)=20.
rlat(3)=10.
rlat(4)=10.
rlon(1)=-50.
rlon(2)=-40.
rlon(3)=-50.
rlon(4)=-40.
crot=1.
srot=0.
ipopt(1)=1
ipopt(2)=30
uo=-999
vo=-999
call ipolatev(4,ipopt,kgdsi,kgdso,jf,kp,1,0,lgi,ui,vi,
& kp,rlat,rlon,crot,srot,ibo,lgo,uo,vo,iret)
print '(2(2x,2f8.2))',(uo(k),vo(k),k=1,kp)
end
Example 3. Interpolate winds from an arbitrary input grid (probably 1x1)
bilinearly to 3 station points.
c read and unpack 4 levels of heights and winds
c and interpolate to 3 sonde sites.
integer ipopt(20)
integer jpds(25),jgds(22),kpdsi(25),kgdsi(22),kgdso(22)
parameter(ji=360*181,km=4,jo=3)
real rlat(jo),rlon(jo),crot(jo),srot(jo)
integer ibi(km),ibo(km)
logical li(ji,km),lo(jo,km)
real hi(ji,km),ui(ji,km),vi(ji,km),ho(jo,km),uo(jo,km),vo(jo,km)
integer lev(km)
data lev/1000,500,250,100/
c define output locations
kgdso=-1
rlat(1)=22.2
rlat(2)=33.3
rlat(3)=44.4
rlon(1)=-50.
rlon(2)=-40.
rlon(3)=-30.
crot=1.
srot=0.
c heights
do k=1,km
jpds=-1
jpds(5)=7
jpds(6)=100
jpds(7)=lev(k)
call getgb(11,31,ji,0,jpds,jgds,ki,kr,kpdsi,kgdsi,
& li(1,k),hi(1,k),iret)
if(iret.ne.0) call exit(iret)
ibi(k)=mod(kpdsi(4)/64,2)
enddo
call ipolates(0,ipopt,kgdsi,kgdso,ji,jo,km,ibi,li,hi,
& jo,rlat,rlon,ibo,lo,ho,iret)
if(iret.ne.0) call exit(iret)
c winds
do k=1,km
jpds=-1
jpds(5)=33
jpds(6)=100
jpds(7)=lev(k)
call getgb(11,31,ji,0,jpds,jgds,ki,kr,kpdsi,kgdsi,
& li(1,k),ui(1,k),iret)
if(iret.ne.0) call exit(iret)
jpds=-1
jpds(5)=34
jpds(6)=100
jpds(7)=lev(k)
call getgb(11,31,ji,0,jpds,jgds,ki,kr,kpdsi,kgdsi,
& li(1,k),vi(1,k),iret)
if(iret.ne.0) call exit(iret)
ibi(k)=mod(kpdsi(4)/64,2)
enddo
call ipolatev(0,ipopt,kgdsi,kgdso,ji,jo,km,ibi,li,ui,vi,
& jo,rlat,rlon,crot,srot,ibo,lo,uo,vo,iret)
if(iret.ne.0) call exit(iret)
print '((i8,3(2x,3f8.2)))',
& (lev(k),(ho(j,k),uo(j,k),vo(j,k),j=1,jo),k=1,km)
end
Example 4. Interpolate 850 mb height and winds from the staggered meso-eta
to a regional 0.25 degree grid.
integer ipopt(20)
integer jpds(25),jgds(22),kpdsi(25),kgdsi(22),kpdso(25),kgdso(22)
integer kgdsi2(22)
parameter(ji=361*271,ig=255,jo=121*81)
real rlat(jo),rlon(jo),crot(jo),srot(jo)
logical li(ji),lo(jo)
real fi(ji),fi2(ji),fo(jo)
real vi(ji),vi2(ji),vo(jo)
character gdso(400)
kgdso=0
kgdso(1)=0
kgdso(2)=121
kgdso(3)=81
kgdso(4)=30000
kgdso(5)=-90000
kgdso(6)=128
kgdso(7)=50000
kgdso(8)=-60000
kgdso(9)=250
kgdso(10)=250
kgdso(11)=64
kgdso(19)=0
kgdso(20)=255
if(iret.ne.0) call exit(iret)
ipopt=0
jpds=-1
jpds(6)=100
jpds(7)=850
jpds(5)=7
call getgb(11,31,ji,0,jpds,jgds,ki,kr,kpdsi,kgdsi,
& li,fi,iret)
if(iret.ne.0) call exit(iret)
call ipxetas(1,ji,ji,1,kgdsi,fi,kgdsi2,fi2,iret)
if(iret.ne.0) call exit(iret)
call ipolates(0,ipopt,kgdsi2,kgdso,ji,jo,1,0,li,fi2,
& ko,rlat,rlon,ibo,lo,fo,iret)
if(iret.ne.0) call exit(iret)
kpdso=kpdsi
kpdso(3)=ig
kpdso(4)=128+64*ibo
kpdso(22)=1
call putgb(51,ko,kpdso,kgdso,lo,fo,iret)
if(iret.ne.0) call exit(iret)
jpds(5)=33
call getgb(11,31,ji,0,jpds,jgds,ki,kr,kpdsi,kgdsi,
& li,fi,iret)
if(iret.ne.0) call exit(iret)
call ipxetas(2,ji,ji,1,kgdsi,fi,kgdsi2,fi2,iret)
if(iret.ne.0) call exit(iret)
jpds(5)=34
call getgb(11,31,ji,0,jpds,jgds,ki,kr,kpdsi,kgdsi,
& li,vi,iret)
if(iret.ne.0) call exit(iret)
call ipxetas(2,ji,ji,1,kgdsi,vi,kgdsi2,vi2,iret)
if(iret.ne.0) call exit(iret)
call ipolatev(0,ipopt,kgdsi2,kgdso,ji,jo,1,0,li,fi2,vi2,
& ko,rlat,rlon,crot,srot,ibo,lo,fo,vo,iret)
if(iret.ne.0) call exit(iret)
kpdso=kpdsi
kpdso(3)=ig
kpdso(4)=128+64*ibo
kpdso(22)=1
kpdso(5)=33
call putgb(51,ko,kpdso,kgdso,lo,fo,iret)
if(iret.ne.0) call exit(iret)
kpdso(5)=34
call putgb(51,ko,kpdso,kgdso,lo,vo,iret)
if(iret.ne.0) call exit(iret)
end