forked from nikhgarg/EmbeddingDynamicStereotypes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchanges_over_time.py
291 lines (241 loc) · 14 KB
/
changes_over_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import csv
import numpy as np
import sys
from cStringIO import StringIO
import copy
import datetime
def cossim(v1, v2, signed = True):
c = np.dot(v1, v2)/np.linalg.norm(v1)/np.linalg.norm(v2)
if not signed:
return abs(c)
return c
def calc_distance_between_vectors(vec1, vec2, distype = 'norm'):
if distype is 'norm':
return np.linalg.norm(np.subtract(vec1, vec2))
else:
return cossim(vec1, vec2)
def calc_distance_between_words(vectors, word1, word2, distype = 'norm'):
if word1 in vectors and word2 in vectors:
if distype is 'norm':
return np.linalg.norm(np.subtract(vectors[word1], vectors[word2]))
else:
return cossim(vectors[word1], vectors[word2])
return np.nan
def calc_distance_over_time(vectors_over_time, word1, word2, distype = 'norm', vocabd = None, word1lims = [50, 1e25], word2lims = [50, 1e25]):
ret = []
for en,vectors in enumerate(vectors_over_time):
if vocabd is None or vocabd[en] is None:
ret.append(calc_distance_between_words(vectors, word1, word2, distype))
elif (vocabd is not None and vocabd[en] is not None and (word1 in vocabd[en] and word2 in vocabd[en])):
if (vocabd[en][word1] < word1lims[0] or vocabd[en][word2] < word2lims[0] or vocabd[en][word1] > word1lims[1] or vocabd[en][word2] > word2lims[1]):
ret.append(np.nan)
else:
ret.append(calc_distance_between_words(vectors, word1, word2, distype))
else:
ret.append(calc_distance_between_words(vectors, word1, word2, distype))
return ret
def calc_distance_over_time_averagevectorsfirst(vectors_over_time, words_to_average_1, words_to_average_2, distype = 'norm', vocabd = None, word1lims = [50, 1e25], word2lims = [50, 1e25]):
retbothaveraged = []
retfirstaveraged = []
retsecondaveraged = []
for en,vectors in enumerate(vectors_over_time):
validwords1 = []
validwords2 = []
for word in words_to_average_1:
if vocabd is not None and vocabd[en] is not None and word in vocabd[en] and word in vectors_over_time[en]:
if vocabd[en][word] < word1lims[0] or vocabd[en][word] > word1lims[1]: continue
validwords1.append(word)
elif (vocabd is None or vocabd[en] is None) and word in vectors_over_time[en]:
validwords1.append(word)
for word in words_to_average_2:
if vocabd is not None and vocabd[en] is not None and word in vocabd[en] and word in vectors_over_time[en]:
if vocabd[en][word] < word2lims[0] or vocabd[en][word] > word2lims[1]: continue
validwords2.append(word)
elif (vocabd is None or vocabd[en] is None) and word in vectors_over_time[en]:
validwords2.append(word)
#if lengths of the valids are 0, distance is nan
if len(validwords1) == 0 or len(validwords2) == 0:
retbothaveraged.append(np.nan)
retfirstaveraged.append(np.nan)
retsecondaveraged.append(np.nan)
else:
average_vector_1 = np.mean(np.array([vectors[word] for word in validwords1]), axis = 0)
average_vector_2 = np.mean(np.array([vectors[word] for word in validwords2]), axis = 0)
retbothaveraged.append(calc_distance_between_vectors(average_vector_1,average_vector_2, distype))
retfirstaveraged.append(np.mean([calc_distance_between_vectors(average_vector_1,vectors[word], distype) for word in validwords2]))
retsecondaveraged.append(np.mean([calc_distance_between_vectors(vectors[word], average_vector_2, distype) for word in validwords1]))
return retbothaveraged, retfirstaveraged, retsecondaveraged
def load_vectors(filename):
print filename
vectors = {}
with open(filename, 'r') as f:
reader = csv.reader(f, delimiter = ' ')
for row in reader:
vectors[row[0]] = [float(x) for x in row[1:] if len(x) >0]
return vectors
def load_vectors_over_time(filenames):
vectors_over_time = []
for f in filenames:
vectors_over_time.append(load_vectors(f))
return vectors_over_time
def single_set_distances_to_single_set(vectors_mult, targetset, otherset, vocabd, word1lims = [50, 1e25], word2lims = [50, 1e25]):
'''
returns average distances of targetset to single set over the vectors_mult
also returns averages done in different way -- average targetset vectors before distancce to each, average
otherset before each, AND average both and return a single value
'''
toset = [[] for _ in range(len(vectors_mult))]
toset_cossim = [[] for _ in range(len(vectors_mult))]
toset_averageothersetfirst = [[] for _ in range(len(vectors_mult))]
toset_cossim_averageothersetfirst = [[] for _ in range(len(vectors_mult))]
toset_averagetargetsetfirst = [[] for _ in range(len(vectors_mult))]
toset_cossim_averagetargetsetfirst = [[] for _ in range(len(vectors_mult))]
for word in targetset:
for word2 in otherset:
dists = calc_distance_over_time(vectors_mult, word, word2, vocabd = vocabd, word1lims = word1lims, word2lims = word2lims)
dists_cossim = calc_distance_over_time(vectors_mult, word, word2, distype = 'cossim', vocabd = vocabd, word1lims = word1lims, word2lims = word2lims)
# print(dists)
for en,d in enumerate(dists):
if not np.isnan(d):
toset[en].append(d)
toset_cossim[en].append(dists_cossim[en])
# print [len(d) for d in toset]
toset = [np.mean(d) for d in toset]
toset_cossim = [np.mean(d) for d in toset_cossim]
averageboth, averagefirst, averagesecond = calc_distance_over_time_averagevectorsfirst(vectors_mult, targetset, otherset, distype = 'norm', vocabd = vocabd, word1lims = word1lims, word2lims = word2lims)
averageboth_cossim, averagefirst_cossim, averagesecond_cossim = calc_distance_over_time_averagevectorsfirst(vectors_mult, targetset, otherset, distype = 'cossim', vocabd = vocabd, word1lims = word1lims, word2lims = word2lims)
return [toset, toset_cossim, averageboth, averagefirst, averagesecond, averageboth_cossim, averagefirst_cossim, averagesecond_cossim]
def set_distances_to_set(vectors_mult, targetset, set0, set1, vocabd, word1lims = [50, 1e25], word2lims = [50, 1e25]):
'''
returns average distances of targetset to each of set0 and set1 over the vectors_mult
'''
toset0 = [[] for _ in range(len(vectors_mult))]
toset1 = [[] for _ in range(len(vectors_mult))]
toset0_cossim = [[] for _ in range(len(vectors_mult))]
toset1_cossim = [[] for _ in range(len(vectors_mult))]
for word in targetset:
for word2 in set0:
dists = calc_distance_over_time(vectors_mult, word, word2, vocabd= vocabd, word1lims = word1lims, word2lims = word2lims )
dists_cossim = calc_distance_over_time(vectors_mult, word, word2, distype = 'cossim', vocabd = vocabd, word1lims = word1lims, word2lims = word2lims )
# print(dists)
for en,d in enumerate(dists):
if not np.isnan(d):
toset0[en].append(d)
toset0_cossim[en].append(dists_cossim[en])
for word2 in set1:
dists = calc_distance_over_time(vectors_mult, word, word2,vocabd= vocabd , word1lims = word1lims, word2lims = word2lims)
dists_cossim = calc_distance_over_time(vectors_mult, word, word2, distype = 'cossim', vocabd= vocabd, word1lims = word1lims, word2lims = word2lims )
# print(dists)
for en,d in enumerate(dists):
if not np.isnan(d):
toset1[en].append(d)
toset1_cossim[en].append(dists_cossim[en])
toset0 = [np.mean(d) for d in toset0]
toset1 = [np.mean(d) for d in toset1]
toset0_cossim = [np.mean(d) for d in toset0_cossim]
toset1_cossim = [np.mean(d) for d in toset1_cossim]
return [toset0, toset0_cossim], [toset1, toset1_cossim]
def load_vocab(fi):
try:
with open(fi, 'r') as f:
reader = csv.reader(f, delimiter = ' ')
return {d[0]:float(d[1]) for d in reader}
except:
return None
def get_counts_dictionary(vocabd, neutwords):
dwords = {}
if vocabd is None or len(vocabd) == 0: return {}
for en in range(len(vocabd)):
if vocabd[en] is None: return {}
for word in neutwords:
dwords[word] = [vocabd[en].get(word, 0) for en in range(len(vocabd))]
return dwords
def get_vector_variance(vectors_over_time, words, vocabd = None, word1lims = [50, 1e25], word2lims = [50, 1e25]):
variances = []
for en,vectors in enumerate(vectors_over_time):
validwords = []
for word in words:
if vocabd is not None and vocabd[en] is not None and word in vocabd[en] and word in vectors_over_time[en]:
if vocabd[en][word] < word1lims[0] or vocabd[en][word] > word1lims[1]: continue
validwords.append(word)
elif (vocabd is None or vocabd[en] is None) and word in vectors_over_time[en]:
validwords.append(word)
#if lengths of the valids are 0, variances are nan
if len(validwords) == 0:
variances.append(np.nan)
else:
avgvar = np.mean(np.var(np.array([vectors[word] for word in validwords]), axis = 0))
variances.append(avgvar)
return variances
def main(filenames, label, csvname = None, neutral_lists = [], group_lists = ['male_pairs', 'female_pairs'], do_individual_group_words = False, do_individual_neutral_words = False, do_cross_individual = False):
vocabs = [fi.replace('vectors/normalized_clean/vectors', 'vectors/normalized_clean/vocab/vocab') for fi in filenames]
vocabd = [load_vocab(fi) for fi in vocabs]
d = {}
vectors_over_time = load_vectors_over_time(filenames)
print('vocab size: ' + str([len(v.keys()) for v in vectors_over_time]))
d['counts_all'] = {}
d['variance_over_time'] = {}
for grouplist in group_lists:
with open('data/'+grouplist + '.txt', 'r') as f2:
groupwords = [x.strip() for x in list(f2)]
d['counts_all'][grouplist] = get_counts_dictionary(vocabd, groupwords)
d['variance_over_time'][grouplist] = get_vector_variance(vectors_over_time, groupwords)
for neuten, neut in enumerate(neutral_lists):
with open('data/'+neut + '.txt', 'r') as f:
neutwords = [x.strip() for x in list(f)]
d['counts_all'][neut] = get_counts_dictionary(vocabd, neutwords)
d['variance_over_time'][neut] = get_vector_variance(vectors_over_time, neutwords)
dloc_neutral = {}
for grouplist in group_lists:
with open('data/'+grouplist + '.txt', 'r') as f2:
print neut, grouplist
groupwords = [x.strip() for x in list(f2)]
distances = single_set_distances_to_single_set(vectors_over_time, neutwords, groupwords, vocabd)
d[neut+'_'+grouplist] = distances
if do_individual_neutral_words:
for word in neutwords:
dloc_neutral[word] = dloc_neutral.get(word, {})
dloc_neutral[word][grouplist] = single_set_distances_to_single_set(vectors_over_time, [word], groupwords, vocabd)
if do_individual_group_words:
d_group_so_far = d.get('indiv_distances_group_'+grouplist, {})
for word in grouplist:
d_group_so_far[word] = d_group_so_far.get(word, {})
d_group_so_far[word][neut] = single_set_distances_to_single_set(vectors_over_time, neutwords,[word], vocabd)
d['indiv_distances_group_'+grouplist] = d_group_so_far
if do_cross_individual:
d_cross = {}
for word in groupwords:
d_cross[word] = {}
for neutword in neutwords:
d_cross[word][neutword] = single_set_distances_to_single_set(vectors_over_time, [neutword],[word], vocabd)
d['indiv_distances_cross_'+grouplist+'_'+neut] = d_cross
d['indiv_distances_neutral_'+neut] = dloc_neutral
with open('run_results/'+csvname, 'ab') as cf:
headerorder = ['datetime', 'label']
headerorder.extend(sorted(list(d.keys())))
print headerorder
d['label'] = label
d['datetime'] = datetime.datetime.now()
csvwriter = csv.DictWriter(cf, fieldnames = headerorder)
csvwriter.writeheader()
csvwriter.writerow(d)
cf.flush()
folder = '../vectors/normalized_clean/'
filenames_nyt = [folder + 'vectorsnyt{}-{}.txt'.format(x, x+3) for x in range(1987, 2005, 1)]
filenames_sgns = [folder + 'vectors_sgns{}.txt'.format(x) for x in range(1910, 2000, 10)]
filenames_svd = [folder + 'vectors_svd{}.txt'.format(x) for x in range(1910, 2000, 10)]
filenames_google = [folder + 'vectorsGoogleNews_exactclean.txt']
filenames_wikipedia = [folder + 'vectorswikipedia.txt']
filenames_commoncrawl = [folder + 'vectorscommoncrawlglove.txt']
filename_map = {'nyt' : filenames_nyt, 'sgns' : filenames_sgns, 'svd': filenames_svd, 'google':filenames_google, 'wikipedia':filenames_wikipedia, 'commoncrawlglove':filenames_commoncrawl}
if __name__ == "__main__":
param_filename = 'run_params.csv'
with open(param_filename,'r') as f:
reader = csv.DictReader(f)
for row in reader:
label = row['label']
neutral_lists = eval(row['neutral_lists'])
group_lists = eval(row['group_lists'])
do_individual_neutral_words = (row['do_individual_neutral_words'] == "TRUE")
do_individual_group_words = (row.get('do_individual_neutral_words', '') == "TRUE")
main(filename_map[label], label = label, csvname = row['csvname'], neutral_lists = neutral_lists, group_lists = group_lists, do_individual_neutral_words = do_individual_neutral_words, do_individual_group_words = do_individual_group_words)