-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmamba_construction.py
350 lines (299 loc) · 12.4 KB
/
mamba_construction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import re
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
# Mamba 관련 라이브러리
from mamba_ssm import Mamba
# Hugging Face 및 LangChain 관련
from transformers import AutoTokenizer
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms.base import LLM
from typing import Optional, List
#####################################################
# 1. 데이터 로드 및 전처리 (train.csv, test.csv)
#####################################################
train = pd.read_csv("./open/train.csv", encoding="utf-8-sig")
test = pd.read_csv("./open/test.csv", encoding="utf-8-sig")
# '공사종류' 전처리
train["공사종류(대분류)"] = train["공사종류"].str.split(" / ").str[0]
train["공사종류(중분류)"] = train["공사종류"].str.split(" / ").str[1]
test["공사종류(대분류)"] = test["공사종류"].str.split(" / ").str[0]
test["공사종류(중분류)"] = test["공사종류"].str.split(" / ").str[1]
# '공종' 전처리
train["공종(대분류)"] = train["공종"].str.split(" > ").str[0]
train["공종(중분류)"] = train["공종"].str.split(" > ").str[1]
test["공종(대분류)"] = test["공종"].str.split(" > ").str[0]
test["공종(중분류)"] = test["공종"].str.split(" > ").str[1]
# '사고객체' 전처리
train["사고객체(대분류)"] = train["사고객체"].str.split(" > ").str[0]
train["사고객체(중분류)"] = train["사고객체"].str.split(" > ").str[1]
test["사고객체(대분류)"] = test["사고객체"].str.split(" > ").str[0]
test["사고객체(중분류)"] = test["사고객체"].str.split(" > ").str[1]
# (Q, A) 튜플 리스트 생성
train_data = []
for _, row in train.iterrows():
q = (
f"공종 중분류 '{row['공종(중분류)']}'에서 "
f"작업 프로세스 '{row['작업프로세스']}' 와 관련된 사고가 발생했습니다."
f"사고 원인은 '{row['사고원인']}'입니다. 재발 방지 대책 및 향후 조치 계획은 무엇인가요?"
)
a = row["재발방지대책 및 향후조치계획"]
train_data.append((q, a))
#####################################################
# 2. MambaLanguageModel 정의
#####################################################
class MambaLanguageModel(nn.Module):
def __init__(self, vocab_size, d_model=16, d_state=16, d_conv=4, expand=2):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.mamba = Mamba(
d_model=d_model,
d_state=d_state,
d_conv=d_conv,
expand=expand
)
self.lm_head = nn.Linear(d_model, vocab_size)
def forward(self, input_ids):
x = self.embedding(input_ids) # [batch, seq_len, d_model]
y = self.mamba(x) # 동일 크기
logits = self.lm_head(y) # [batch, seq_len, vocab_size]
return logits
#####################################################
# 3. 오토리그레시브(AR) 학습/추론 함수
#####################################################
def train_step(model, input_ids, optimizer, criterion):
"""1 step(training loop)에서 forward → backward → update까지 진행"""
optimizer.zero_grad()
logits = model(input_ids)
# 예측(= t 시점) vs. 정답(= t+1 시점) 구조
preds = logits[:, :-1, :].contiguous()
labels = input_ids[:, 1:].contiguous()
loss = criterion(preds.view(-1, preds.size(-1)), labels.view(-1))
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def val_step(model, input_ids, criterion):
"""검증 단계에서 loss 계산만 진행(역전파 X)"""
logits = model(input_ids)
preds = logits[:, :-1, :].contiguous()
labels = input_ids[:, 1:].contiguous()
loss = criterion(preds.view(-1, preds.size(-1)), labels.view(-1))
return loss.item()
@torch.no_grad()
def generate_text(model, tokenizer, prompt, max_new_tokens=50, eos_token_id=None):
"""단순 Greedy Search로 텍스트 생성"""
model.eval()
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].cuda()
for _ in range(max_new_tokens):
logits = model(input_ids)
next_token_logits = logits[0, -1, :]
next_token_id = torch.argmax(next_token_logits).unsqueeze(0).unsqueeze(0)
input_ids = torch.cat([input_ids, next_token_id], dim=1)
if eos_token_id is not None and next_token_id.item() == eos_token_id:
break
output_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
return output_text
#####################################################
# 4. (UPDATED) 후처리 함수 (중복 "A:" 모두 처리)
#####################################################
def postprocess_answer(generated_text: str) -> str:
"""
1) 모든 'A:' (대소문자 무관, 공백 무관) 패턴을 찾은 뒤
마지막으로 등장하는 'A:' 위치 다음 텍스트만 추출
2) [EOS] 제거
3) 앞뒤 공백 제거
"""
pattern = r"(?i)A\s*:\s*"
matches = list(re.finditer(pattern, generated_text))
if len(matches) == 0:
# 'A:'가 전혀 없으면 전체 문장을 반환
answer_part = generated_text
else:
# 마지막(match) A:의 끝 인덱스
last_match = matches[-1]
start_idx = last_match.end()
answer_part = generated_text[start_idx:]
# [EOS] 제거
answer_part = answer_part.replace("[EOS]", "")
# 앞뒤 공백 제거
answer_part = answer_part.strip()
return answer_part
#####################################################
# 5. Tokenizer 설정
#####################################################
tokenizer_name = "klue/bert-base"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
vocab_size = tokenizer.vocab_size
#####################################################
# 6. MambaLanguageModel 초기화
#####################################################
mamba_lm = MambaLanguageModel(
vocab_size=vocab_size,
d_model=768, # BERT-base 수준
d_state=16,
d_conv=4,
expand=2
).cuda()
# 옵티마이저, 손실함수
optimizer = optim.AdamW(mamba_lm.parameters(), lr=1e-4)
criterion = nn.CrossEntropyLoss()
#####################################################
# 7. Dataset, DataLoader (Train / Validation 분할)
#####################################################
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
class QADataset(Dataset):
def __init__(self, pairs, tokenizer, max_length=512):
self.samples = []
self.tokenizer = tokenizer
self.max_length = max_length
for q, a in pairs:
text_sequence = f"Q: {q} [SEP] A: {a} [EOS]"
enc = self.tokenizer(
text_sequence,
return_tensors="pt",
truncation=True,
max_length=self.max_length
)
input_ids = enc["input_ids"].squeeze(0)
self.samples.append(input_ids)
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
return self.samples[idx]
def collate_fn(batch):
"""가변 길이 시퀀스를 동일 길이로 패딩"""
max_len = max(x.size(0) for x in batch)
padded_batch = []
for x in batch:
pad_size = max_len - x.size(0)
padded = torch.cat([x, torch.full((pad_size,), tokenizer.pad_token_id, dtype=torch.long)])
padded_batch.append(padded.unsqueeze(0))
return torch.cat(padded_batch, dim=0)
# 7-1. Train / Val 분할
train_pairs, val_pairs = train_test_split(train_data, test_size=0.2, random_state=42)
train_dataset = QADataset(train_pairs, tokenizer, max_length=512)
val_dataset = QADataset(val_pairs, tokenizer, max_length=512)
train_loader = DataLoader(
train_dataset,
batch_size=8,
shuffle=True,
collate_fn=collate_fn
)
val_loader = DataLoader(
val_dataset,
batch_size=8,
shuffle=False,
collate_fn=collate_fn
)
#####################################################
# 8. Early Stopping을 고려한 학습 루프
#####################################################
num_epochs = 100
patience = 3 # 검증 손실이 개선되지 않는 epoch 수가 3이 되면 학습 중단
best_val_loss = float("inf")
counter = 0
for epoch in range(num_epochs):
# === [훈련 단계] ===
mamba_lm.train()
total_train_loss = 0.0
for step, input_ids in enumerate(train_loader):
input_ids = input_ids.cuda()
loss_val = train_step(mamba_lm, input_ids, optimizer, criterion)
total_train_loss += loss_val
if (step + 1) % 100 == 0:
avg_train_loss = total_train_loss / (step + 1)
print(f"[Epoch {epoch+1}, Step {step+1}] train_loss={avg_train_loss:.4f}")
# === [검증 단계] ===
mamba_lm.eval()
total_val_loss = 0.0
for val_input_ids in val_loader:
val_input_ids = val_input_ids.cuda()
val_loss_val = val_step(mamba_lm, val_input_ids, criterion)
total_val_loss += val_loss_val
avg_val_loss = total_val_loss / len(val_loader)
avg_train_loss = total_train_loss / len(train_loader)
print(f"=== Epoch {epoch+1} / {num_epochs} ===")
print(f"Train Loss: {avg_train_loss:.4f} | Val Loss: {avg_val_loss:.4f}")
# Early Stopping 체크
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
counter = 0
print("[Info] Validation loss improved. Model saved.\n")
# 필요시 모델 가중치 저장 (예: torch.save(mamba_lm.state_dict(), "best_mamba_model.pt"))
else:
counter += 1
print(f"[Info] Validation loss did NOT improve. Counter={counter}/{patience}\n")
if counter >= patience:
print("[Early Stopping] No improvement after {} epochs. Training stopped.".format(patience))
break
print("최종 학습 완료!")
#####################################################
# 9. Mamba + LangChain 연동 (선택)
#####################################################
class MambaLLM(LLM):
model_name: str = "Mamba"
def __init__(
self,
model: nn.Module,
tokenizer,
max_new_tokens: int = 64,
**kwargs
):
super().__init__(**kwargs)
self._model = model
self._tokenizer = tokenizer
self._max_new_tokens = max_new_tokens
self._eos_token_id = tokenizer.sep_token_id
@property
def _llm_type(self) -> str:
return "mamba_custom"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
output = generate_text(
model=self._model,
tokenizer=self._tokenizer,
prompt=prompt,
max_new_tokens=self._max_new_tokens,
eos_token_id=self._eos_token_id
)
return output
#####################################################
# 10. test.csv 예측 후 submission.csv 생성
#####################################################
test_results = []
# 임베딩 모델 준비 (문서화 또는 후처리 용도)
embedding_model = HuggingFaceEmbeddings(model_name="jhgan/ko-sbert-nli")
for i, row in test.iterrows():
question_text = (
f"Q: 공종 중분류 '{row['공종(중분류)']}'에서 "
f"작업 프로세스 '{row['작업프로세스']}' 와 관련된 사고가 발생했습니다. "
f"사고 원인은 '{row['사고원인']}'입니다. 재발 방지 대책 및 향후 조치 계획은 무엇인가요? "
"[SEP] A:"
)
generated_answer = generate_text(
model=mamba_lm,
tokenizer=tokenizer,
prompt=question_text,
max_new_tokens=100,
eos_token_id=tokenizer.sep_token_id
)
# 후처리: "마지막 A:" 뒤의 텍스트만 추출
clean_answer = postprocess_answer(generated_answer)
# 벡터 임베딩 (추가 분석을 위해 예시로 저장)
answer_vector = embedding_model.embed_query(clean_answer)
record = {
"ID": row["ID"],
"재발방지대책 및 향후조치계획": clean_answer
}
# 벡터를 CSV에 함께 넣고 싶다면 다음과 같이 저장
for idx_dim in range(len(answer_vector)):
record[f"vec_{idx_dim}"] = answer_vector[idx_dim]
test_results.append(record)
submission_df = pd.DataFrame(test_results)
submission_df.to_csv("submission.csv", index=False, encoding="utf-8-sig")
print("submission.csv 파일 생성 완료!")