-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmamba_kkoma.py
472 lines (404 loc) · 16.5 KB
/
mamba_kkoma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import re
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
# KoNLPy: Kkma for sentence splitting
# !pip install konlpy # Make sure Konlpy is installed, or comment this line if already installed
from konlpy.tag import Kkma
# Mamba 관련 라이브러리
from mamba_ssm import Mamba
# (Optional) For embeddings if still needed
#from langchain.embeddings import HuggingFaceEmbeddings
# For a LangChain wrapper
from langchain.llms.base import LLM
from typing import Optional, List
#####################################################
# 1. 데이터 로드 및 전처리 (train.csv, test.csv)
#####################################################
train = pd.read_csv("./open/train.csv", encoding="utf-8-sig")
test = pd.read_csv("./open/test.csv", encoding="utf-8-sig")
# '공사종류' 전처리
train["공사종류(대분류)"] = train["공사종류"].str.split(" / ").str[0]
train["공사종류(중분류)"] = train["공사종류"].str.split(" / ").str[1]
test["공사종류(대분류)"] = test["공사종류"].str.split(" / ").str[0]
test["공사종류(중분류)"] = test["공사종류"].str.split(" / ").str[1]
# '공종' 전처리
train["공종(대분류)"] = train["공종"].str.split(" > ").str[0]
train["공종(중분류)"] = train["공종"].str.split(" > ").str[1]
test["공종(대분류)"] = test["공종"].str.split(" > ").str[0]
test["공종(중분류)"] = test["공종"].str.split(" > ").str[1]
# '사고객체' 전처리
train["사고객체(대분류)"] = train["사고객체"].str.split(" > ").str[0]
train["사고객체(중분류)"] = train["사고객체"].str.split(" > ").str[1]
test["사고객체(대분류)"] = test["사고객체"].str.split(" > ").str[0]
test["사고객체(중분류)"] = test["사고객체"].str.split(" > ").str[1]
# (Q, A) 튜플 리스트 생성
train_data = []
for _, row in train.iterrows():
q = (
f"공종 중분류 '{row['공종(중분류)']}'에서 "
f"작업 프로세스 '{row['작업프로세스']}' 와 관련된 사고가 발생했습니다. "
f"사고 원인은 '{row['사고원인']}'입니다. 재발 방지 대책 및 향후 조치 계획은 무엇인가요?"
)
a = row["재발방지대책 및 향후조치계획"]
train_data.append((q, a))
#####################################################
# 2. Kkma 기반 커스텀 "SentenceTokenizer"
#####################################################
class KkmaSentenceTokenizer:
"""
Splits text into sentence-level "tokens" using Kkma.
Then maps these sentences to integer IDs for model training.
(For real-world usage, consider morphological tokens (kkma.morphs)
rather than entire sentences.)
"""
def __init__(self, special_tokens=None):
if special_tokens is None:
# Define special tokens for [PAD], [SEP], [EOS], [UNK]
special_tokens = ["[PAD]", "[SEP]", "[EOS]", "[UNK]"]
self.kkma = Kkma()
self.special_tokens = special_tokens
# Map from token(string) -> int, and reverse
self.token2id = {}
self.id2token = {}
def build_vocab(self, texts):
"""
Build vocabulary from a list of text strings.
Each text is split into sentences, and each unique sentence is a token in the vocab.
"""
# 1) Initialize with special tokens
for i, t in enumerate(self.special_tokens):
self.token2id[t] = i
current_idx = len(self.special_tokens)
# 2) Collect all sentences from the entire corpus
sentence_set = set()
for txt in texts:
# Use kkma to split into sentences
sents = self.kkma.sentences(txt)
for s in sents:
sentence_set.add(s.strip())
# 3) Add each unique sentence to the vocabulary
for s in sentence_set:
if s not in self.token2id:
self.token2id[s] = current_idx
current_idx += 1
# 4) Create reverse mapping
self.id2token = {v: k for k, v in self.token2id.items()}
def encode(self, text):
"""
Encode a single text into a list of IDs (one ID per sentence).
NOTE: For demonstration only – these "tokens" are entire sentences.
"""
sents = self.kkma.sentences(text)
ids = []
for s in sents:
s = s.strip()
if s in self.token2id:
ids.append(self.token2id[s])
else:
# Unknown sentence
ids.append(self.token2id["[UNK]"])
return ids
def decode(self, ids):
"""
Decode a list of integer IDs back to text (joining sentences with a space).
"""
sents = []
for idx in ids:
if idx in self.id2token:
sents.append(self.id2token[idx])
else:
sents.append("[UNK]")
return " ".join(sents)
@property
def vocab_size(self):
return len(self.token2id)
def get_token_id(self, token="[PAD]"):
"""
For convenience, returns the ID of a special token (e.g. [PAD], [SEP], [EOS]).
"""
return self.token2id[token]
#####################################################
# 3. MambaLanguageModel 정의
#####################################################
class MambaLanguageModel(nn.Module):
def __init__(self, vocab_size, d_model=16, d_state=16, d_conv=4, expand=2):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.mamba = Mamba(
d_model=d_model,
d_state=d_state,
d_conv=d_conv,
expand=expand
)
self.lm_head = nn.Linear(d_model, vocab_size)
def forward(self, input_ids):
x = self.embedding(input_ids) # [batch, seq_len, d_model]
y = self.mamba(x) # 동일 크기
logits = self.lm_head(y) # [batch, seq_len, vocab_size]
return logits
#####################################################
# 4. 오토리그레시브(AR) 학습/추론 함수
#####################################################
def train_step(model, input_ids, optimizer, criterion):
"""1 step(training loop)에서 forward → backward → update까지 진행"""
optimizer.zero_grad()
logits = model(input_ids)
# 예측(= t 시점) vs. 정답(= t+1 시점)
preds = logits[:, :-1, :].contiguous() # all but last token to predict next
labels = input_ids[:, 1:].contiguous() # all but first token as "labels"
loss = criterion(preds.view(-1, preds.size(-1)), labels.view(-1))
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def val_step(model, input_ids, criterion):
"""검증 단계에서 loss 계산만 진행(역전파 X)"""
logits = model(input_ids)
preds = logits[:, :-1, :].contiguous()
labels = input_ids[:, 1:].contiguous()
loss = criterion(preds.view(-1, preds.size(-1)), labels.view(-1))
return loss.item()
@torch.no_grad()
def generate_text(model, tokenizer, prompt, max_new_tokens=50, eos_token_id=None):
"""
단순 Greedy Search로 텍스트 생성.
Here each "token" is a sentence, so we generate one sentence at a time.
"""
model.eval()
# Encode prompt into token-IDs
input_ids = torch.tensor([tokenizer.encode(prompt)], dtype=torch.long).cuda()
# Greedy decoding
for _ in range(max_new_tokens):
logits = model(input_ids)
next_token_logits = logits[0, -1, :] # last position
next_token_id = torch.argmax(next_token_logits).unsqueeze(0).unsqueeze(0)
input_ids = torch.cat([input_ids, next_token_id], dim=1)
# Stop if we hit [EOS]
if eos_token_id is not None and next_token_id.item() == eos_token_id:
break
# Decode back to text
output_text = tokenizer.decode(input_ids[0].tolist())
return output_text
#####################################################
# 5. 후처리 함수 (중복 "A:" 모두 처리)
#####################################################
def postprocess_answer(generated_text: str) -> str:
"""
1) 모든 'A:' (대소문자 무관, 공백 무관) 패턴을 찾은 뒤
마지막으로 등장하는 'A:' 위치 다음 텍스트만 추출
2) [EOS] 제거
3) 앞뒤 공백 제거
"""
pattern = r"(?i)A\s*:\s*"
matches = list(re.finditer(pattern, generated_text))
if len(matches) == 0:
# 'A:'가 전혀 없으면 전체 문장을 반환
answer_part = generated_text
else:
# 마지막(match) A:의 끝 인덱스
last_match = matches[-1]
start_idx = last_match.end()
answer_part = generated_text[start_idx:]
# [EOS] 제거
answer_part = answer_part.replace("[EOS]", "")
# 앞뒤 공백 제거
answer_part = answer_part.strip()
return answer_part
#####################################################
# 6. KkmaTokenizer 준비 (vocab 빌드)
#####################################################
# 6-1. 수집할 전체 텍스트: Q + A 합치거나,
# 필요하면 train/test 전부를 한꺼번에 처리
all_texts = []
for q, a in train_data:
# For building vocab, combine Q, A, plus special tokens
text_sequence = f"Q: {q} [SEP] A: {a} [EOS]"
all_texts.append(text_sequence)
# (Optional) Also include test questions for coverage
for _, row in test.iterrows():
q_text = (
f"공종 중분류 '{row['공종(중분류)']}'에서 "
f"작업 프로세스 '{row['작업프로세스']}' 와 관련된 사고가 발생했습니다. "
f"사고 원인은 '{row['사고원인']}'입니다. 재발 방지 대책 및 향후 조치 계획은 무엇인가요? "
"[SEP] A: [EOS]"
)
all_texts.append(q_text)
# Initialize our custom tokenizer
tokenizer = KkmaSentenceTokenizer()
tokenizer.build_vocab(all_texts)
print("Vocab size:", tokenizer.vocab_size)
#####################################################
# 7. MambaLanguageModel 초기화
#####################################################
mamba_lm = MambaLanguageModel(
vocab_size=tokenizer.vocab_size,
d_model=768, # Example: BERT-base-like hidden size
d_state=16,
d_conv=4,
expand=2
).cuda()
# 옵티마이저, 손실함수
optimizer = optim.AdamW(mamba_lm.parameters(), lr=1e-4)
criterion = nn.CrossEntropyLoss()
#####################################################
# 8. Dataset, DataLoader (Train / Validation 분할)
#####################################################
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
class QADataset(Dataset):
def __init__(self, pairs, tokenizer, max_length=512):
"""
Each sample: "Q: ... [SEP] A: ... [EOS]"
Then we encode via Kkma sentences and store the list of IDs.
"""
self.samples = []
self.tokenizer = tokenizer
self.max_length = max_length
for q, a in pairs:
text_sequence = f"Q: {q} [SEP] A: {a} [EOS]"
# Convert to IDs
input_ids = self.tokenizer.encode(text_sequence)
# Truncate if needed
if len(input_ids) > self.max_length:
input_ids = input_ids[:self.max_length]
self.samples.append(torch.tensor(input_ids, dtype=torch.long))
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
return self.samples[idx]
def collate_fn(batch):
"""가변 길이 시퀀스를 동일 길이로 패딩"""
max_len = max(x.size(0) for x in batch)
padded_batch = []
pad_id = tokenizer.get_token_id("[PAD]")
for x in batch:
pad_size = max_len - x.size(0)
padded = torch.cat([x, torch.full((pad_size,), pad_id, dtype=torch.long)])
padded_batch.append(padded.unsqueeze(0))
return torch.cat(padded_batch, dim=0)
# 8-1. Train / Val 분할
train_pairs, val_pairs = train_test_split(train_data, test_size=0.2, random_state=42)
train_dataset = QADataset(train_pairs, tokenizer, max_length=512)
val_dataset = QADataset(val_pairs, tokenizer, max_length=512)
train_loader = DataLoader(
train_dataset,
batch_size=8,
shuffle=True,
collate_fn=collate_fn
)
val_loader = DataLoader(
val_dataset,
batch_size=8,
shuffle=False,
collate_fn=collate_fn
)
#####################################################
# 9. Early Stopping을 고려한 학습 루프
#####################################################
num_epochs = 10 # For demo, smaller epoch count
patience = 3
best_val_loss = float("inf")
counter = 0
for epoch in range(num_epochs):
# === [훈련 단계] ===
mamba_lm.train()
total_train_loss = 0.0
for step, input_ids in enumerate(train_loader):
input_ids = input_ids.cuda()
loss_val = train_step(mamba_lm, input_ids, optimizer, criterion)
total_train_loss += loss_val
if (step + 1) % 100 == 0:
avg_train_loss = total_train_loss / (step + 1)
print(f"[Epoch {epoch+1}, Step {step+1}] train_loss={avg_train_loss:.4f}")
# === [검증 단계] ===
mamba_lm.eval()
total_val_loss = 0.0
for val_input_ids in val_loader:
val_input_ids = val_input_ids.cuda()
val_loss_val = val_step(mamba_lm, val_input_ids, criterion)
total_val_loss += val_loss_val
avg_val_loss = total_val_loss / len(val_loader)
avg_train_loss = total_train_loss / len(train_loader)
print(f"=== Epoch {epoch+1} / {num_epochs} ===")
print(f"Train Loss: {avg_train_loss:.4f} | Val Loss: {avg_val_loss:.4f}")
# Early Stopping 체크
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
counter = 0
print("[Info] Validation loss improved. Model saved.\n")
# torch.save(mamba_lm.state_dict(), "best_mamba_model.pt")
else:
counter += 1
print(f"[Info] Validation loss did NOT improve. Counter={counter}/{patience}\n")
if counter >= patience:
print("[Early Stopping] No improvement after {} epochs. Training stopped.".format(patience))
break
print("최종 학습 완료!")
#####################################################
# 10. Mamba + LangChain 연동 (선택)
#####################################################
class MambaLLM(LLM):
model_name: str = "Mamba"
def __init__(
self,
model: nn.Module,
tokenizer: KkmaSentenceTokenizer,
max_new_tokens: int = 64,
**kwargs
):
super().__init__(**kwargs)
self._model = model
self._tokenizer = tokenizer
self._max_new_tokens = max_new_tokens
# Let's store the [EOS] token ID
self._eos_token_id = tokenizer.get_token_id("[EOS]")
@property
def _llm_type(self) -> str:
return "mamba_custom"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
output = generate_text(
model=self._model,
tokenizer=self._tokenizer,
prompt=prompt,
max_new_tokens=self._max_new_tokens,
eos_token_id=self._eos_token_id
)
return output
#####################################################
# 11. test.csv 예측 후 submission.csv 생성
#####################################################
test_results = []
# If you still want to embed the final answers, you can
# re-introduce a vector embedding approach here. (Optional)
# embedding_model = HuggingFaceEmbeddings(model_name="jhgan/ko-sbert-nli")
for i, row in test.iterrows():
question_text = (
f"Q: 공종 중분류 '{row['공종(중분류)']}'에서 "
f"작업 프로세스 '{row['작업프로세스']}' 와 관련된 사고가 발생했습니다. "
f"사고 원인은 '{row['사고원인']}'입니다. 재발 방지 대책 및 향후 조치 계획은 무엇인가요? "
"[SEP] A:"
)
generated_answer = generate_text(
model=mamba_lm,
tokenizer=tokenizer,
prompt=question_text,
max_new_tokens=50, # for example
eos_token_id=tokenizer.get_token_id("[EOS]")
)
# 후처리: "마지막 A:" 뒤의 텍스트만 추출
clean_answer = postprocess_answer(generated_answer)
# (Optional) 임베딩
# answer_vector = embedding_model.embed_query(clean_answer)
record = {
"ID": row["ID"],
"재발방지대책 및 향후조치계획": clean_answer
}
# 예시: 벡터를 CSV에 넣으려면
# for idx_dim in range(len(answer_vector)):
# record[f"vec_{idx_dim}"] = answer_vector[idx_dim]
test_results.append(record)
submission_df = pd.DataFrame(test_results)
submission_df.to_csv("submission.csv", index=False, encoding="utf-8-sig")
print("submission.csv 파일 생성 완료!")