-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
298 lines (255 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import numpy as np
import torch
from torch.optim import Adam
from torch.utils.data import DataLoader
from transformers import BertTokenizer
import argparse
import os
import random
from sum_dist.configs import MConfigs
from sum_dist.models.encoder import TransformerEncoder
from sum_dist.models.decoder import TransformerDecoder
from sum_dist.models.seq2seq import Seq2seqModel
from sum_dist.models.loss import ReconstructionLoss
from sum_dist.trainer import Trainer
from sum_dist.utils.data.collate_fn import InitCollate
from sum_dist.utils.data.cnndm import DatasetCNNDM
from sum_dist.utils.data.xsum import DatasetXSUM
from sum_dist.utils.data.mlsum import DatasetMLSUMde, DatasetMLSUMes, DatasetMLSUMru
from sum_dist.utils.data.arxiv import DatasetArxiv
from sum_dist.utils.data.wiki import DatasetWiki
from sum_dist.utils.evaluate import RougeCalculator
import sum_dist.utils.logging as logging
from sum_dist.utils.parse import str2bool
logger = logging.get_logger(__name__)
def main():
parser = argparse.ArgumentParser()
# training setting
parser.add_argument('-mode', type=str, nargs='?', default='normal', choices=['normal', 'order'])
parser.add_argument('-dataset', type=str, nargs='?', default='cnndm', choices=['cnndm', 'xsum', 'mlsum_de', 'mlsum_es', 'mlsum_ru', 'wiki_en', 'arxiv'])
parser.add_argument('-start_batch_idx', type=int, nargs='?', default=0)
parser.add_argument('-batch_size_train', type=int, nargs='?', default=4)
parser.add_argument('-accumulation_step', type=int, nargs='?', default=64)
parser.add_argument('-save_checkpoint_step', type=int, nargs='?', default=200) # save every `save_checkpoint_step*accumulation_step`
parser.add_argument('-device', type=str, nargs='?', default='cuda:0')
# training path
parser.add_argument('-log_dir', type=str, nargs='?', default='./sum_dist/logs/train/transformer22/lg/window5_s1-mask-my_loss_masking_pos-xsum')
parser.add_argument('-load_config_dir', type=str, nargs='?', default='./sum_dist/exp_configs/0030-1.json')
parser.add_argument('-load_checkpoint_dir', type=str, nargs='?', default=None)
parser.add_argument('-save_checkpoint_dir', type=str, nargs='?', default='./sum_dist/checkpoint/transformer22/lg/window5_s1-mask-my_loss_masking_pos-xsum')
# rouge path
parser.add_argument('-prediction_dest', type=str, nargs='?', default='./sum_dist/output/transformer22-prediction/lg/window5_s1-mask-my_loss_masking_pos-xsum')
parser.add_argument('-target_dest', type=str, nargs='?', default='./sum_dist/output/transformer22-gold/lg/window5_s1-mask-my_loss_masking_pos-xsum')
parser.add_argument('-prediction_file_prefix', type=str, nargs='?', default='prediction')
parser.add_argument('-target_file_prefix', type=str, nargs='?', default='gold')
# ann dataset path
parser.add_argument('-cnn_ann_pkl_dir', type=str, nargs='?', default='./sum_dist/data/preprocess/cnndm-bert-ann.pkl')
parser.add_argument('-xsum_ann_pkl_dir', type=str, nargs='?', default='./sum_dist/data/preprocess/xsum-bert-ann.pkl')
parser.add_argument('-mlsum_de_ann_pkl_dir', type=str, nargs='?', default='./sum_dist/data/preprocess/mlsum_de-bert-ann.pkl')
parser.add_argument('-mlsum_es_ann_pkl_dir', type=str, nargs='?', default='./sum_dist/data/preprocess/mlsum_es-bert-ann.pkl')
parser.add_argument('-mlsum_ru_ann_pkl_dir', type=str, nargs='?', default='./sum_dist/data/preprocess/mlsum_ru-bert-ann.pkl')
parser.add_argument('-arxiv_dataset_dir', type=str, nargs='?', default='./sum_dist/data/arxiv_data/arxiv-dataset/arxiv-dataset')
parser.add_argument('-arxiv_ann_pkl_dir', type=str, nargs='?', default='./sum_dist/data/preprocess/arxiv-bert-ann.pkl')
parser.add_argument('-wiki_en_ann_pkl_dir', type=str, nargs='?', default='./sum_dist/data/preprocess/wiki_en-bert-ann.pkl')
# other
parser.add_argument('-print_detail', type=str2bool, nargs='?', const=True, default=False)
args = parser.parse_args()
logger.info(args)
device = torch.device(args.device)
config = MConfigs()
tokenizer = None
collate_fn_train = None
encoder = None
decoder = None
# load config
if args.load_checkpoint_dir is not None and os.path.exists(args.load_checkpoint_dir):
checkpoint = torch.load(args.load_checkpoint_dir)
config = checkpoint['config']
logger.info(f'Load checkpoint config from: {args.load_checkpoint_dir}')
if args.load_config_dir is not None and os.path.exists(args.load_config_dir):
config = config.load_json(load_dir=args.load_config_dir)
logger.info(f'Load json config from: {args.load_config_dir}')
logger.info(config.__dict__)
# set seed
torch.manual_seed(config.seed)
random.seed(config.seed)
np.random.seed(config.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# set tokenizer
tokenizer = BertTokenizer.from_pretrained(config.bert_version)
# set collate_fn
clean_brackets = False
if args.dataset == 'xsum':
clean_brackets = True
collate_fn_train = InitCollate(
tokenizer=tokenizer,
encoder_max_seq_len=config.seq_len,
decoder_max_seq_len=config.decoder_position_max_len,
encoder_sampling_len_levels=config.sampling_length_levels,
cur_encoder_sampling_len_level=config.cur_sampling_length_level,
clean_brackets=clean_brackets)
# set encoder
encoder = TransformerEncoder(
embedding_dim=config.word_embed_size,
num_layer=config.encoder_num_layer,
num_head=config.encoder_num_head,
dim_feedforward=config.encoder_ff_embed_size,
decoder_dropout=config.encoder_dropout,
activation=config.encoder_activation,
num_embeddings=len(tokenizer),
embeddings=None)
# set decoder
decoder = TransformerDecoder(
encoder_embed_size=config.repr_embed_size,
vocab_size=len(tokenizer),
num_layer=config.decoder_num_layer,
num_head=config.decoder_num_head,
dim_feedforward=config.decoder_ff_embed_size,
decoder_dropout=config.decoder_dropout,
pos_dropout=config.decoder_position_dropout,
pos_max_len=config.decoder_position_max_len,
activation=config.decoder_activation
)
logger.info('Setting encoder/decoder done.')
# set dataset
dataset = {}
if args.dataset == 'cnndm':
for split in ['train', 'validation', 'test']:
num_data = config.num_data[split]
dataset[split] = DatasetCNNDM(
dataset_pkl_path=None,
ann_pkl_path=args.cnn_ann_pkl_dir,
num_data=num_data,
split=split)
elif args.dataset == 'xsum':
for split in ['train', 'validation', 'test']:
num_data = config.num_data[split]
dataset[split] = DatasetXSUM(
dataset_pkl_path=None,
ann_pkl_path=args.xsum_ann_pkl_dir,
num_data=num_data,
split=split)
elif args.dataset == 'mlsum_de':
for split in ['train', 'validation', 'test']:
num_data = config.num_data[split]
dataset[split] = DatasetMLSUMde(
dataset_pkl_path=None,
ann_pkl_path=args.mlsum_de_ann_pkl_dir,
num_data=num_data,
split=split)
elif args.dataset == 'mlsum_es':
for split in ['train', 'validation', 'test']:
num_data = config.num_data[split]
dataset[split] = DatasetMLSUMes(
dataset_pkl_path=None,
ann_pkl_path=args.mlsum_es_ann_pkl_dir,
num_data=num_data,
split=split)
elif args.dataset == 'mlsum_ru':
for split in ['train', 'validation', 'test']:
num_data = config.num_data[split]
dataset[split] = DatasetMLSUMru(
dataset_pkl_path=None,
ann_pkl_path=args.mlsum_ru_ann_pkl_dir,
num_data=num_data,
split=split)
elif args.dataset == 'arxiv':
for split in ['train', 'validation', 'test']:
num_data = config.num_data[split]
dataset[split] = DatasetArxiv(
dataset_dir=args.arxiv_dataset_dir,
ann_pkl_path=args.arxiv_ann_pkl_dir,
num_data=num_data,
split=split)
elif args.dataset == 'wiki_en':
for split in ['train']:
num_data = config.num_data[split]
dataset[split] = DatasetWiki(
dataset_pkl_path=None,
ann_pkl_path=args.wiki_en_ann_pkl_dir,
num_data=num_data,
split=split)
logger.info(f'Loading dataset done:')
for split in ['train', 'validation', 'test']:
if split in dataset.keys():
logger.info(f'{split}: {len(dataset[split])} data')
# set model & optimizer
encoder_out_embed_size = config.repr_embed_size
if config.span_aggregation_choice == 'cat':
encoder_out_embed_size = config.repr_embed_size*2
model = Seq2seqModel(
word_embed_size=config.word_embed_size,
vocab_size=len(tokenizer),
encoder = encoder,
encoder_out_embed_size=encoder_out_embed_size,
window_size=config.window_size,
slide_step=config.slide_step,
decoder = decoder,
decoder_in_embed_size=config.repr_embed_size,
device=device,
span_aggregation_choice=config.span_aggregation_choice,
masking_ratio=config.masking_ratio_levels[config.cur_masking_ratio_level],
masking_weight=config.masking_weight_levels[config.cur_masking_weight_level],
logger=logger,
).to(device)
optimizer = Adam(model.parameters(), lr=config.lr, weight_decay=config.weight_decay)
# load checkpoint
cur_step = 0
if args.load_checkpoint_dir is not None and os.path.exists(args.load_checkpoint_dir):
checkpoint = torch.load(args.load_checkpoint_dir)
cur_step = checkpoint['step']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info(f'Load model/optimizer config from: {args.load_checkpoint_dir}')
logger.info('Loading model/optimizer done.')
# set rouge calculator
rouge_calculator = RougeCalculator(
prediction_dir=args.prediction_dest,
gold_dir=args.target_dest,
prediction_prefix=args.prediction_file_prefix,
gold_prefix=args.target_file_prefix,
logger=logger)
logger.info('Setting ROUGE calculator done.')
# set loss
loss_fn = ReconstructionLoss(
pad_idx=tokenizer.convert_tokens_to_ids([config.pad_token])[0],
).to(device)
logger.info('Setting loss fn done.')
# set trainer
trainer = Trainer(
config=config,
model=model,
tokenizer=tokenizer,
rouge_calculator=rouge_calculator,
optimizer=optimizer,
log_dir=args.log_dir,
device=device,
logger=logger)
logger.info('Setting trainer done.')
logger.info('Training...')
# set data loader
data_loader_train = DataLoader(
dataset=dataset['train'],
batch_size=args.batch_size_train,
collate_fn=collate_fn_train,
drop_last=True,
shuffle=True)
# train
trainer.train(
mode=args.mode,
epoch_num=config.epoch_num,
start_batch_idx=args.start_batch_idx,
loss_fn=loss_fn,
data_loader_train=data_loader_train,
collate_fn=collate_fn_train,
accumulation_step=args.accumulation_step,
save_checkpoint_step=args.save_checkpoint_step,
save_checkpoint_dir=args.save_checkpoint_dir,
prediction_dest=args.prediction_dest,
gold_dest=args.target_dest,
cur_step=cur_step,
print_detail=args.print_detail)
return
if __name__ == '__main__':
main()