-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunciones.py
347 lines (275 loc) · 12.2 KB
/
funciones.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import random
import numpy as np
import copy
import interfaz as inter
def print_sudoku(board):
for fila in board:
print(' '.join(map(str, fila)))
def generar_sudoku(porcentaje):
def es_valido(sudoku, fila, columna, num):
# Verificar si el número es válido en la fila, columna y cuadrante
for i in range(9):
if sudoku[fila][i] == num or sudoku[i][columna] == num:
return False
start_row, start_col = 3 * (fila // 3), 3 * (columna // 3)
for i in range(3):
for j in range(3):
if sudoku[i + start_row][j + start_col] == num:
return False
return True
def resolver_sudoku(sudoku):
for i in range(9):
for j in range(9):
if sudoku[i][j] == 0:
for num in range(1, 10):
if es_valido(sudoku, i, j, num):
sudoku[i][j] = num
if resolver_sudoku(sudoku):
return True
sudoku[i][j] = 0 # Si no es válido, se restaura
return False
return True
sudoku = [[0 for _ in range(9)] for _ in range(9)]
resolver_sudoku(sudoku)
# Calcular la cantidad de celdas a eliminar según el porcentaje
num_celdas_eliminar = int(81 * (100 - porcentaje) / 100)
for _ in range(num_celdas_eliminar):
row = random.randint(0, 8)
col = random.randint(0, 8)
sudoku[row][col] = 0
return sudoku
def generar_poblacion_sudoku(desafio, tamano_poblacion):
poblacion = []
for _ in range(tamano_poblacion):
nuevo_sudoku = [[num if num != 0 else random.randint(1, 9) for num in fila] for fila in desafio]
poblacion.append(nuevo_sudoku)
return poblacion
def tournamentSelection(population, tournament_size=2):
selected_population = []
random.seed()
for _ in range(0, len(population), 2):
tournament_participants1 = random.sample(population, tournament_size)
tournament_participants2 = random.sample(population, tournament_size)
tournament_fitness1 = [fitness_function(participante) for participante in tournament_participants1]
tournament_fitness2 = [fitness_function(participante) for participante in tournament_participants2]
winner1 = tournament_participants1[np.argmin(tournament_fitness1)]
winner2 = tournament_participants2[np.argmin(tournament_fitness2)]
selected_population.append([winner1, winner2])
return selected_population
def crossOver(pc1, pc2, padres, population):
nuevaPoblacion = []
for i in range(0, len(padres)):
p1 = population[-1]
p2 = random.choice(population)
rand1 = random.uniform(0, 1)
if rand1 < pc1: # Se realiza la cruza
for r, row in enumerate(p1):
rand2 = random.uniform(0, 1)
if rand2 < pc2: # Se realiza el intercambio de genes entre filas
for c, col in enumerate(row):
if col == 0:
p1[r][c], p2[r][c] = p2[r][c], p1[r][c]
offspring1 = p1
offspring2 = p2
else:
offspring1 = p1
offspring2 = p2
nuevaPoblacion.append(copy.deepcopy(offspring1))
nuevaPoblacion.append(copy.deepcopy(offspring2))
return nuevaPoblacion
def indexAvailableToSwap(row):
index = [i for i, col in enumerate(row) if col == 0]
if len(index) < 2:
return None, None # No hay suficientes celdas vacías para intercambiar
index1, index2 = random.sample(index, 2)
return index1, index2
def mutation(pm1, pm2, population):
for individuo in population:
for r, row in enumerate(individuo):
rand1 = random.uniform(0, 1)
if rand1 < pm1:
idx1, idx2 = indexAvailableToSwap(row)
if idx1 is not None and idx2 is not None:
row[idx1], row[idx2] = row[idx2], row[idx1]
rand2 = random.uniform(0, 1)
if rand2 < pm2:
for c, col in enumerate(row):
if col == 0:
individuo[r][c] = 0
sudoku = generar_sudoku(30) # Ajusta el porcentaje según tu preferencia
individuo[r] = sudoku[r]
def columnLocalSearch(population):
for individuo in population:
columnas_asociadas = []
columnas = []
repetidos = get_repeated_columns(individuo)
nuevas_columnas = []
for i in range(len(individuo)):
columnas.append([row[i] for row in individuo])
associated_column = [row[i] for row in individuo]
columnas_asociadas.append(associated_column)
for c, columna in enumerate(columnas):
random_columna = random.choice(columnas)
indice_col1 = columnas.index(columna)
indice_col2 = columnas.index(random_columna)
col_rep1 = repetidos[indice_col1]
col_rep2 = repetidos[indice_col2]
for r, row in enumerate(columna):
if (col_rep1[r] == col_rep2[r] == 1) and (r not in columnas_asociadas[indice_col1]) and (r not in columnas_asociadas[indice_col2]):
if row != random_columna[r]:
temp = columna[r]
columna[r] = random_columna[r]
random_columna[r] = temp
nuevas_columnas.append(list(columna)) # Dejar como lista
for c, col in enumerate(nuevas_columnas):
individuo = actualiza_columna(individuo, col, c)
def actualiza_columna(matriz, nueva_columna, indice_columna):
nueva_matriz = [list(fila) for fila in matriz]
for i in range(len(matriz)):
nueva_matriz[i][indice_columna] = nueva_columna[i]
return [tuple(fila) for fila in nueva_matriz]
def get_repeated_columns(sudoku):
columns_repeated = np.zeros((len(sudoku), len(sudoku)), dtype=int)
for i in range(len(sudoku)):
column = [row[i] for row in sudoku]
numeros = []
repetidos = []
for row in column:
if row not in numeros:
numeros.append(row)
else:
repetidos.append(row)
for r, row in enumerate(column):
if row in repetidos:
columns_repeated[r][i] = 1
return columns_repeated
def subblockLocalSearch(population):
for individuo in population:
subblocks = [individuo[i:i + 3] for i in range(0, 9, 3)]
new_subblocks = []
for index, subblock in enumerate(subblocks):
random_subblock = random.choice(subblocks)
rand_index = subblocks.index(random_subblock)
for r, row in enumerate(subblock):
actual_row = subblock[r]
actual_row_rnd = random_subblock[r]
repetidos = [1 if len(set(row)) < 3 else 0 for row in subblock]
repetidos_rnd = [1 if len(set(row)) < 3 else 0 for row in random_subblock]
if all(reps == 1 for reps in repetidos + repetidos_rnd): # Hay repetidos
for c, valor in enumerate(row):
if valor != actual_row_rnd[c] and c not in range(3):
actual_row[c], actual_row_rnd[c] = actual_row_rnd[c], actual_row[c]
new_subblocks.append(subblock)
individuo[:] = [elemento for sublista in new_subblocks for elemento in sublista]
def sort_population(population):
fitness_eval = [fitness_function(individuo) for individuo in population]
sorted_population = [individuo for _, individuo in sorted(zip(fitness_eval, population), key=lambda x: x[0], reverse=True)]
return sorted_population
def join_population(nueva, anterior, pop_size):
nueva_poblacion = []
for i in range(pop_size):
individuo1 = fitness_function(nueva[i])
individuo2 = fitness_function(anterior[i])
if individuo1 < individuo2:
nueva_poblacion.append(nueva[i])
else:
nueva_poblacion.append(anterior[i])
return nueva_poblacion
def elite_population_learning(population, elite_population):
elites = copy.deepcopy(elite_population)
x_random = random.choice(elites)
x_random_fitness = fitness_function(x_random)
x_worst = population[0]
max_fx = fitness_function(x_worst)
Pb = (max_fx - x_random_fitness) / max_fx
rand = random.uniform(0, 1)
if rand < Pb:
population[0] = x_random
else:
nuevo_individuo = generar_sudoku(30) # Ajusta el porcentaje según tu preferencia
population[0] = nuevo_individuo
def rellenar_ceros_sudokus(sudokus):
sudokus_modificados = copy.deepcopy(sudokus)
for sudoku in sudokus_modificados:
for i in range(len(sudoku)):
numeros_disponibles = set(range(1, 10))
for j in range(len(sudoku[i])):
if sudoku[i][j] == 0:
# Seleccionar un número aleatorio que aún no se ha utilizado en la fila
nuevo_numero = random.choice(list(numeros_disponibles))
sudoku[i][j] = nuevo_numero
numeros_disponibles.remove(nuevo_numero)
else:
# Si el número ya está en la fila, quitarlo de los disponibles
numeros_disponibles.discard(sudoku[i][j])
return sudokus_modificados
def fitness_function(X):
n = 9
contador = 0
def contar_repetidos(memoria, inicio_i, fin_i, inicio_j, fin_j):
nonlocal contador
for i in range(inicio_i, fin_i):
for j in range(inicio_j, fin_j):
if X[j][i] == 0:
X[j][i] = random.randint(1,9)
if X[j][i] in memoria:
contador += 1
else:
memoria.append(X[j][i])
else:
if X[j][i] in memoria:
contador += 1
else:
memoria.append(X[j][i])
# Filas y columnas
for i in range(n):
memoria_filas = []
memoria_columnas = []
contar_repetidos(memoria_filas, i, i+1, 0, n)
contar_repetidos(memoria_columnas, 0, n, i, i+1)
# Cuadrantes
for cuadrante_i in range(0, n, n//3):
for cuadrante_j in range(0, n, n//3):
memoria_cuadrante = []
contar_repetidos(memoria_cuadrante, cuadrante_i, cuadrante_i + n//3, cuadrante_j, cuadrante_j + n//3)
return contador
# x es el sodoku con el porcentaje de llenado
def main(pc1, pc2, pm1, pm2, population_size, generaciones, x, y, flag):
population = generar_poblacion_sudoku(y, population_size)
if flag == 1:
population[0] = x
# Generaciones
elite_population = []
i = 0
while i <= generaciones:
i += 1
padres = tournamentSelection(copy.deepcopy(population))
nueva_poblacion = copy.deepcopy(population)
nueva_poblacion = crossOver(pc1, pc2, padres, nueva_poblacion)
mutation(pm1, pm2, nueva_poblacion)
columnLocalSearch(nueva_poblacion)
subblockLocalSearch(nueva_poblacion)
nueva_poblacion = sort_population(copy.deepcopy(nueva_poblacion))
poblacion_anterior = sort_population(copy.deepcopy(population))
nueva_poblacion = join_population(copy.deepcopy(nueva_poblacion), copy.deepcopy(poblacion_anterior), population_size)
best = copy.deepcopy(nueva_poblacion[-1])
nobest = copy.deepcopy(nueva_poblacion[0])
if all(fitness_function(best) < fitness_function(elite) for elite in elite_population):
elite_population.append(copy.deepcopy(best))
elite_population_learning(nueva_poblacion, copy.deepcopy(elite_population))
#print(f"Best {fitness_function(best)}")
population = copy.deepcopy(nueva_poblacion)
if(fitness_function(best) == 0):
print("Termine :O")
return best, nobest
return best, nobest
def mostrar_aptitud_poblacion(population):
for p in population:
print(f"{fitness_function(p)}", end=' ')
print("\n")
def mostrar_pop(population):
for p in population:
print_sudoku(p)
print("\n")
if __name__ == "__main__":
main()