-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_gp_layer.py
129 lines (99 loc) · 5.17 KB
/
nn_gp_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import collections
import numpy as np
import tensorflow as tf
import tensorflow.compat.v1 as tf1
State = collections.namedtuple('State', ['mu', 'sigma', 'n'])
def inv_softplus(x):
return np.log(1 - np.exp(-x)) + x
def inv_sigmoid(x):
return np.log(x) - np.log(1. - x)
class GaussianRecurrentLayer(object):
def __init__(self, ndim, name,
corr_init=0.1,
learn_variance=True, learn_covariance=True):
self.seed_rng = np.random.RandomState(42)
self.name = name
self.ndim = ndim
with tf1.variable_scope(name):
self.mu = tf.zeros((1, ndim), name='prior_mean')
self.var_vbl = tf1.get_variable("prior_var", (1, ndim), tf.float32,
tf.constant_initializer(inv_softplus(np.sqrt(1.))),
trainable=learn_variance)
self.var = tf.square(tf.nn.softplus(self.var_vbl))
self.corr_vbl = tf1.get_variable("prior_corr", (1, ndim), tf.float32,
tf.constant_initializer(inv_sigmoid(corr_init)),
trainable=learn_covariance)
self.corr = tf.sigmoid(self.corr_vbl)
self.cov = tf.sigmoid(self.corr_vbl) * self.var
self.n = tf.zeros([], name='n')
self.prior = State(self.mu, self.var, self.n)
self.current_state = self.prior
@property
def variables(self):
return self.mu, self.var_vbl, self.corr_vbl
def reset(self):
self.current_state = self.prior
return self.current_state
def replicate_state(self, batch_size):
self.current_state = State(tf.tile(self.mu, [batch_size, 1]), self.var, self.n)
return self.current_state
def set_state(self, state):
self.current_state = state
def update_distribution(self, observation):
mu, sigma, n = self.current_state
n += 1
dd = self.cov / (self.var + self.cov * (n - 1.))
mu_out = (1. - dd) * mu + observation * dd
var_out = (1. - dd) * sigma + (self.var - self.cov) * dd
self.current_state = State(mu_out, var_out, n)
def bulk_update_distribution(self, observations):
mu, sigma, n = self.current_state
n += tf.cast(tf.shape(observations)[1], dtype=tf.float32)
mu_out = self.cov / (self.var + self.cov * (n - 1)) * tf.reduce_sum(observations - self.mu, axis=1) + self.mu
var_out = self.var - n * tf.square(self.cov) / (self.var + self.cov * (n - 1))
self.current_state = State(mu_out, var_out, n)
def get_updated_state(self, state, observation):
mu, sigma, n = state
n += 1
dd = self.cov / (self.var + self.cov * (n - 1.))
mu_out = (1. - dd) * mu + observation * dd
var_out = (1. - dd) * sigma + (self.var - self.cov) * dd
return State(mu_out, var_out, n)
def get_posterior_params(self):
mu, sigma, _ = self.current_state
return mu, tf.tile(sigma - (self.var - self.cov), [tf.shape(mu)[0], 1])
def get_posterior_params_given_state(self, state):
mu, sigma, _ = state
return mu, sigma - (self.var - self.cov)
def get_log_likelihood(self, observation):
mu, var, _ = self.current_state
log_pdf = -0.5 * tf.log(2. * np.pi * var) - tf.square(observation - mu) / (2. * var)
return tf.reduce_sum(log_pdf, -1)
def get_sequence_log_likelihood(self, observation):
mu, var, _ = self.current_state
log_pdf = -0.5 * tf.log(2. * np.pi * var) - tf.square(observation - mu[:, None, :]) / (2. * var)
return tf.reduce_sum(log_pdf, -1)
def get_log_likelihood_given_state(self, observation, state):
mu, var, _ = state
log_pdf = -0.5 * tf.log(2. * np.pi * var) - tf.square(observation - mu) / (2. * var)
return tf.reduce_sum(log_pdf, -1)
def get_factorized_log_likelihood(self, observation, x1_ndim):
mu, var, _ = self.current_state
log_pdf = -0.5 * tf.log(2. * np.pi * var) - tf.square(observation - mu) / (2. * var)
return tf.reduce_sum(log_pdf[:, :x1_ndim], axis=-1), tf.reduce_sum(log_pdf[:, x1_ndim:], axis=-1)
def get_factorized_log_likelihood_given_state(self, observation, x1_ndim, state):
mu, var, _ = state
log_pdf = -0.5 * tf.log(2. * np.pi * var) - tf.square(observation - mu) / (2. * var)
return tf.reduce_sum(log_pdf[:, :x1_ndim], axis=-1), tf.reduce_sum(log_pdf[:, x1_ndim:], axis=-1)
def get_log_likelihood_under_prior(self, observation):
mu, var, _ = self.prior
log_pdf = -0.5 * tf.log(2. * np.pi * var) - tf.square(observation - mu) / (2. * var)
return tf.reduce_sum(log_pdf, -1)
def sample(self):
mu, var, _ = self.current_state
return mu + tf.sqrt(var) * tf.random_normal(shape=tf.shape(mu), seed=self.seed_rng.randint(317070),
name="Normal_sampler")
def sample_given_state(self, state):
mu, var, _ = state
return mu + tf.sqrt(var) * tf.random_normal(shape=tf.shape(mu), seed=self.seed_rng.randint(317070),
name="Normal_sampler")