-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsac_oracle.py
434 lines (344 loc) · 19.4 KB
/
sac_oracle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import os
import pickle
import time
from collections import defaultdict
import numpy as np
import tensorflow as tf
import tensorflow.compat.v1 as tf1
import data
from envs import env_utils
from utils import nn_utils, misc_utils
from utils.logger_utils import EpochLogger
np.set_printoptions(precision=3)
class OracleSAC:
def __init__(self, train_envs, test_envs, replay_buffer,
obs_dim, action_dim, reward_dim, env_params_dim, seq_len,
qf1, qf2, vf, policy,
policy_lr=1e-3, qf_lr=1e-3, alpha_lr=1e-3,
gamma=0.99, target_entropy='auto',
tau=0.005, no_info_policy=False):
self.replay_buffer = replay_buffer
# environment
self.train_envs = train_envs
self.train_envs_ids = env_utils.get_env_id(self.train_envs)
self.test_envs = test_envs
self.test_envs_ids = env_utils.get_env_id(self.test_envs)
# dims
self.obs_dim = obs_dim
self.action_dim = action_dim
self.reward_dim = reward_dim
self.env_params_dim = env_params_dim
self.target_entropy = target_entropy if target_entropy != 'auto' else -np.prod(self.action_dim)
# logger
self.logger = EpochLogger()
# learning rates
self.policy_lr = policy_lr
self.qf_lr = qf_lr
self.vf_lr = qf_lr
self.alpha_lr = alpha_lr
# other params
self.seq_len = seq_len
self.gamma = gamma
self.tau = tau
self.no_info_policy = no_info_policy # give policy the env params?
# alpha
log_alpha = tf.compat.v1.get_variable('log_alpha', dtype=tf.float32, initializer=0.)
self.alpha = tf.exp(log_alpha)
# placeholders
self.iteration_var = tf1.placeholder(tf.int64, shape=None, name='iteration')
self.obs_var = tf1.placeholder(tf.float32, shape=(None, self.obs_dim), name='obs')
self.next_obs_var = tf1.placeholder(tf.float32, shape=(None, self.obs_dim), name='next_obs')
self.actions_var = tf1.placeholder(tf.float32, shape=(None, self.action_dim), name='actions')
self.rewards_var = tf1.placeholder(tf.float32, shape=(None, self.reward_dim), name='rewards')
self.terminals_var = tf1.placeholder(tf.float32, shape=(None,), name='terminals')
self.env_params_var = tf1.placeholder(tf.float32, shape=(None, self.env_params_dim), name='env_params')
# placeholders for sequences
self.obs_seq_var = tf1.placeholder(tf.float32, shape=(None, self.seq_len, self.obs_dim), name='obs_seq_var')
self.next_obs_seq_var = tf1.placeholder(tf.float32, shape=(None, self.seq_len, self.obs_dim),
name='next_obs_seq_var')
self.actions_seq_var = tf1.placeholder(tf.float32, shape=(None, self.seq_len, self.action_dim),
name='actions_seq')
self.rewards_seq_var = tf1.placeholder(tf.float32, shape=(None, self.seq_len, self.reward_dim),
name='rewards_seq')
self.terminals_seq_var = tf1.placeholder(tf.float32, shape=(None, self.seq_len), name='terminals_seq')
self.env_params_seq_var = tf1.placeholder(tf.float32, shape=(None, self.seq_len, self.env_params_dim),
name='env_params_seq')
# templates
self.qf1 = tf1.make_template('qf1', qf1)
self.qf2 = tf1.make_template('qf2', qf2)
self.vf = tf1.make_template('vf_main', vf)
self.vf_target = tf1.make_template('vf_target', vf)
self.policy = tf1.make_template('policy', policy)
# outputs from the networks
self.qf1_out = self.qf1(
tf.concat([self.obs_seq_var, self.actions_seq_var, self.env_params_seq_var], axis=-1))
qf2_out = self.qf2(tf.concat([self.obs_seq_var, self.actions_seq_var, self.env_params_seq_var], axis=-1))
vf_out = self.vf(tf.concat([self.obs_seq_var, self.env_params_seq_var], axis=-1))
vf_target_out = self.vf_target(tf.concat([self.next_obs_seq_var, self.env_params_seq_var], axis=-1))
sampled_seq_actions, actions_seq_logprobs = self.sample_oracle_actions_sequence(policy=self.policy,
obs=self.obs_seq_var,
env_params=self.env_params_seq_var)
qf1_pi_out = self.qf1(tf.concat([self.obs_seq_var, sampled_seq_actions, self.env_params_seq_var], axis=-1))
qf2_pi_out = self.qf2(tf.concat([self.obs_seq_var, sampled_seq_actions, self.env_params_seq_var], axis=-1))
self.get_sampled_action = self.sample_oracle_action(policy=self.policy, obs=self.obs_var,
env_params=self.env_params_var)
# session and init weights
self.sess = tf.Session()
init_networks_params = tf.global_variables_initializer()
self.sess.run(init_networks_params)
self.saver = tf.train.Saver()
print('number of parameters:', np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))
# network parameters
policy_params = tf.trainable_variables(self.policy.name)
qf1_params = tf.trainable_variables(self.qf1.name)
qf2_params = tf.trainable_variables(self.qf2.name)
vf_params = tf.trainable_variables(self.vf.name)
vf_target_params = tf.trainable_variables(self.vf_target.name)
print('policy params', nn_utils.count_vars(self.policy.name), policy_params)
print('QF1', nn_utils.count_vars(self.qf1.name), qf1_params)
print('QF2', nn_utils.count_vars(self.qf2.name), qf2_params)
print('VF', nn_utils.count_vars(self.vf.name), vf_params)
print('VF_target', nn_utils.count_vars(self.vf_target.name), vf_target_params)
# losses
self.q_target = tf.stop_gradient(tf.squeeze(self.rewards_seq_var) +
(1. - self.terminals_seq_var) * self.gamma * vf_target_out)
qf1_loss = 0.5 * tf.reduce_mean((self.q_target - self.qf1_out) ** 2)
qf2_loss = 0.5 * tf.reduce_mean((self.q_target - qf2_out) ** 2)
min_q_pi = tf.minimum(qf1_pi_out, qf2_pi_out)
v_target = tf.stop_gradient(min_q_pi - self.alpha * actions_seq_logprobs)
vf_loss = 0.5 * tf.reduce_mean((v_target - vf_out) ** 2)
value_loss = qf1_loss + qf2_loss + vf_loss
policy_loss = tf.reduce_mean(self.alpha * actions_seq_logprobs - min_q_pi)
alpha_loss = -tf.reduce_mean(log_alpha * tf.stop_gradient(actions_seq_logprobs + self.target_entropy))
entropy = -tf.reduce_mean(actions_seq_logprobs)
policy_train_op = tf1.train.AdamOptimizer(learning_rate=self.policy_lr).minimize(
policy_loss, var_list=policy_params, name='policy_opt')
with tf.control_dependencies([policy_train_op]):
value_params = qf1_params + qf2_params + vf_params
critics_train_op = tf1.train.AdamOptimizer(self.qf_lr).minimize(value_loss, var_list=value_params,
name='qf_vf_opt')
with tf.control_dependencies([critics_train_op]):
alpha_train_op = tf1.train.AdamOptimizer(self.alpha_lr, name='alpha_opt').minimize(
loss=alpha_loss, var_list=[log_alpha])
target_update = tf.group([tf.assign(v_targ, (1. - self.tau) * v_targ + tau * v_main)
for v_main, v_targ in zip(vf_params, vf_target_params)])
self.actor_critic_train_step_ops = [policy_loss, qf1_loss, qf2_loss, vf_loss, alpha_loss,
self.qf1_out, qf2_out, vf_out, entropy,
policy_train_op, critics_train_op, alpha_train_op, target_update]
# init the rest of variables
target_init = tf.group(
[tf.assign(v_targ, v_main) for v_main, v_targ in zip(vf_params, vf_target_params)])
uninitialized_vars = []
for var in tf.global_variables():
try:
self.sess.run(var)
except tf.errors.FailedPreconditionError:
uninitialized_vars.append(var)
init_new_vars_op = tf.initialize_variables(uninitialized_vars)
self.sess.run(init_new_vars_op)
self.sess.run(target_init)
def sample_oracle_actions_sequence(self, policy, obs, env_params):
seq_len = nn_utils.int_shape(obs)[1]
act_samples = []
act_probs = []
for i in range(seq_len):
if self.no_info_policy:
policy_inputs = obs[:, i, :]
else:
policy_inputs = tf.concat([obs[:, i, :], env_params[:, i, :]], axis=-1)
_, act_sample, act_prob = policy(inputs=policy_inputs)
act_samples.append(act_sample)
act_probs.append(act_prob)
act_samples = tf.stack(act_samples, axis=1)
act_probs = tf.stack(act_probs, axis=1)
return act_samples, act_probs
def sample_oracle_action(self, policy, obs, env_params):
if self.no_info_policy:
policy_inputs = obs
else:
policy_inputs = tf.concat([obs, env_params], axis=-1)
act_mean, act_sample, _ = policy(inputs=policy_inputs)
return act_mean, act_sample
def reshape_env2bruno(self, x):
x = np.squeeze(x)
if len(x.shape) == 0:
x = np.array([x])
x = x[None, :]
return x
def reshape_bruno2env(self, x):
if x.shape[-1] == 1:
x = np.squeeze(x)[None]
else:
x = np.squeeze(x)
return x
def get_feed_dict(self, iteration, batch):
feed_dict = {
self.obs_seq_var: batch['observations'],
self.actions_seq_var: batch['actions'],
self.next_obs_seq_var: batch['next_observations'],
self.rewards_seq_var: batch['rewards'],
self.terminals_seq_var: batch['terminals'],
self.env_params_seq_var: batch['env_params']
}
if iteration is not None:
feed_dict[self.iteration_var] = iteration
return feed_dict
def do_actor_critic_training_steps(self, iteration, batch):
feed_dict = self.get_feed_dict(iteration, batch)
outs = self.sess.run(self.actor_critic_train_step_ops, feed_dict)
self.logger.store(LossPi=outs[0], LossQ1=outs[1], LossQ2=outs[2],
LossV=outs[3], LossAlpha=outs[4], Q1Vals=outs[5], Q2Vals=outs[6], VVals=outs[7],
EntropyPi=outs[8])
def get_action(self, env_params, observation, deterministic=False):
feed_dict = {self.env_params_var: env_params, self.obs_var: observation}
mu, sample = self.sess.run(self.get_sampled_action, feed_dict=feed_dict)
return mu[0] if deterministic else sample[0]
def test(self, max_episode_length, train_iteration, n_episodes=1, plot_n_steps=0, plot_diagnostics=False,
save_dir=None, n_reset_steps=None, dump_data=False, **kwargs):
if save_dir is not None:
ckpt_file = save_dir + 'params.ckpt'
print('restoring parameters from', ckpt_file)
self.saver.restore(self.sess, tf.train.latest_checkpoint(save_dir))
all_returns = []
returns = defaultdict(list)
rewards = defaultdict(list)
for i, env in enumerate(self.test_envs):
env.seed(i)
rewards_env = {}
env_id = env_utils.get_env_id(env)
env_params = env.get_params()[None, :]
env_params_encoded = self.replay_buffer.encode_env_param(env_params)[None, :]
for j in range(n_episodes):
o = env.reset()
if plot_n_steps > 0 and j == 0:
print('\n ---- ENVIRONMENT:', env_id)
print('initial state:', o)
done_flag = False
episode_history = []
episode_rewards = []
episode_length, episode_return = 0, 0.
while episode_length < max_episode_length and not done_flag:
if n_reset_steps is not None and episode_length % n_reset_steps == 0:
print('%s return after %s steps :' % (env_id, episode_length), episode_return)
episode_return = 0.
o = env.reset()
current_obs = self.reshape_env2bruno(o)
a = self.get_action(env_params_encoded, current_obs, deterministic=True)
a = self.reshape_bruno2env(a)
o, r, done_flag, info = env.step(a)
episode_rewards.append(r)
episode_return += r
episode_length += 1
if (episode_length > max_episode_length - plot_n_steps or episode_length < plot_n_steps) and j == 0:
print(episode_length, 'action:', a)
print('obs:', o)
env.render(mode='human')
next_obs = self.reshape_env2bruno(o)
r = self.reshape_env2bruno(r)
a = self.reshape_env2bruno(a)
done_flag = np.float32(np.array([done_flag]))
episode_history.append((current_obs, a, next_obs, r, done_flag, env_params))
if plot_n_steps and j == 0:
print('episode return:', episode_return)
if plot_diagnostics and j == 0:
rews_seq = np.concatenate([x[3][:, None, :] for x in episode_history], axis=1)
misc_utils.plot_rewards(rews_seq, name='%s_%s_%s' % (train_iteration, env_id, episode_return))
returns[env_id].append(episode_return)
rewards_env[j] = episode_rewards
all_returns.append(episode_return)
kwargs = {'TestEpRet_' + env_id: episode_return, 'TestEpLen_' + env_id: episode_length}
self.logger.store(**kwargs)
rewards[env_id] = rewards_env
print('test returns %s :' % env_id, returns[env_id])
if dump_data:
with open(save_dir + '/test_rewards.pkl', 'wb') as f:
pickle.dump(rewards, f)
print('average return', np.mean(all_returns))
kwargs = {'TestAvgRet': np.mean(all_returns)}
self.logger.store(**kwargs)
return returns
def train(self, max_episodes, n_exploration_episodes,
max_episode_length, max_test_episode_length,
batch_size_episodes, batch_seq_len,
n_save_iter, n_updates, plot_n_steps=0,
n_test_episodes=5, plot_diagnostics=False, save_dir=None, **kwargs):
start_time = time.time()
n_interactions = 0
n_episodes = 0
for iter_episodes in range(max_episodes):
print(iter_episodes)
for env in self.train_envs:
# new episode
env_id = env_utils.get_env_id(env)
env_params = env.get_params()
env_params = self.reshape_env2bruno(env_params)
env_params_encoded = self.replay_buffer.encode_env_param(env_params)[None, :]
# episode_history = []
episode_history = data.Episode()
episode_length, episode_return = 0, 0.
current_obs = self.reshape_env2bruno(env.reset())
while episode_length < max_episode_length:
if iter_episodes > n_exploration_episodes:
a = self.get_action(env_params_encoded, current_obs)
a = self.reshape_bruno2env(a)
else:
a = env.action_space.sample()
next_obs, r, done_flag, _ = env.step(a)
episode_return += r
episode_length += 1
next_obs = self.reshape_env2bruno(next_obs)
r = self.reshape_env2bruno(r)
a = self.reshape_env2bruno(a)
done_flag = np.float32(np.array([done_flag]))
if not done_flag:
episode_history.append(current_obs, a, next_obs, r, done_flag, env_params)
current_obs = next_obs
else:
current_obs = self.reshape_env2bruno(env.reset())
# save episode in the replay buffer
self.replay_buffer.store(episode_history)
n_interactions += episode_length
n_episodes += 1
kwargs = {'EpRet_' + env_id: episode_return, 'EpLen_' + env_id: episode_length}
self.logger.store(**kwargs)
# actor-critic updates
if iter_episodes > n_exploration_episodes:
for j in range(n_updates):
batch = self.replay_buffer.sample_batch(batch_size_episodes, batch_seq_len)
self.do_actor_critic_training_steps(iter_episodes, batch)
if (iter_episodes + 1) % n_save_iter == 0:
# run test episodes
test_returns = self.test(n_episodes=n_test_episodes, max_episode_length=max_test_episode_length,
plot_n_steps=plot_n_steps, plot_diagnostics=plot_diagnostics,
train_iteration=iter_episodes)
# print stats
self.logger.log_tabular('Epoch', int(iter_episodes / n_save_iter))
self.logger.log_tabular('TotalEnvInteracts', n_interactions)
self.logger.log_tabular('TotalEpisodes', n_episodes)
for train_env_id in self.train_envs_ids:
self.logger.log_tabular('EpRet_' + train_env_id, average_only=True)
for test_env_id in self.test_envs_ids:
self.logger.log_tabular('TestEpRet_' + test_env_id, average_only=True)
self.logger.log_tabular('TestAvgRet', average_only=True)
self.logger.log_tabular('EntropyPi', with_min_and_max=True)
self.logger.log_tabular('Q1Vals', with_min_and_max=True)
self.logger.log_tabular('Q2Vals', with_min_and_max=True)
self.logger.log_tabular('VVals', with_min_and_max=True)
self.logger.log_tabular('LossAlpha', average_only=True)
self.logger.log_tabular('LossPi', average_only=True)
self.logger.log_tabular('LossQ1', average_only=True)
self.logger.log_tabular('LossQ2', average_only=True)
self.logger.log_tabular('LossV', average_only=True)
self.logger.log_tabular('Time', time.time() - start_time)
self.logger.dump_tabular()
# save models
if save_dir is not None:
self.saver.save(self.sess, save_dir + '/params.ckpt')
if os.path.isfile(save_dir + '/meta.pkl'):
with open(save_dir + '/meta.pkl', 'rb') as f:
d = pickle.load(f)
d.update({n_interactions: test_returns})
else:
d = {n_interactions: test_returns}
with open(save_dir + '/meta.pkl', 'wb') as f:
pickle.dump(d, f)