-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathknowledge_retrieval.py
222 lines (198 loc) · 7.55 KB
/
knowledge_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
-------------------------------------------------
@File Name: knowledge_retrieval.py
@Author: Luyao.zhang
@Date: 2023/12/29
@Description:
-------------------------------------------------
"""
import os
from dotenv import load_dotenv
from typing import List
from langchain.chains import LLMChain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryByteStore
from langchain.vectorstores import Milvus
from pymilvus import connections, Collection
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
load_dotenv(".env")
# ------------ OpenAI Configuration -----------
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY1")
openai_api_key = os.environ.get("OPENAI_API_KEY1")
emb_openai_api_base = os.environ.get("EMB_OPENAI_API_BASE")
chat_openai_api_base = os.environ.get("CHAT_OPENAI_API_BASE")
os.environ["openai_api_key"] = openai_api_key
os.environ["openai_api_base"] = chat_openai_api_base
# ------------ Milvus -----------
connection_args = {"host": os.environ.get("MILVUS_HOST"), "port": os.environ.get("MILVUS_PORT")}
class RAG_pipeline(object):
"""
构建RAG Pipeline
"""
def __init__(self, milvus_connection_args, embeddings_model, query: str):
"""
Args:
doc_folder: txt本地文件夹路径
milvus_connection_args: milvus连接信息
embeddings_model: text嵌入模型
query: 用户输入的请求
"""
self.milvus_connection_args = milvus_connection_args
self.embeddings_model = embeddings_model
self.query = query
def child_chunk_retriever(
self,
child_collection_name: str = "child_chunk"):
"""
对child_chunk设置检索器retriever
Returns:
"""
# 构建用于索引child chunk的向量数据库
vectorstore = Milvus(
connection_args=self.milvus_connection_args,
collection_name=child_collection_name,
embedding_function=self.embeddings_model,
)
# The storage layer for the parent documents
store = InMemoryByteStore()
id_key = "doc_id"
# The retriever (empty to start)
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
byte_store=store,
id_key=id_key,
)
# Vectorstore alone retrieves the child chunks
# retriever.search_type = SearchType.mmr
child_chunk_res = retriever.vectorstore.similarity_search(
query=self.query, k=3)
# return child_chunk_res
# 只返回doc_id组成的列表
res_id_list = []
for single_res in child_chunk_res:
res_id_list.append(single_res.metadata["doc_id"])
return res_id_list
# Retriever returns larger chunks
# large_chunk_res = retriever.get_relevant_documents(query=query)
# print(large_chunk_res)
def summary_retriever(
self,
summary_collection_name: str = "summary"):
"""
对summary_chunk设置检索器retriever
Returns:
"""
# 构建用于索引summary的向量数据库
vectorstore = Milvus(
connection_args=self.milvus_connection_args,
collection_name=summary_collection_name,
embedding_function=self.embeddings_model,
)
# The storage layer for the parent documents
store = InMemoryByteStore()
id_key = "doc_id"
# The retriever (empty to start)
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
byte_store=store,
id_key=id_key,
)
# Vectorstore alone retrieves the summary chunks
# retriever.search_type = SearchType.mmr
summary_chunk_res = retriever.vectorstore.similarity_search(
query=self.query, k=3)
# return summary_chunk_res
# 只返回doc_id组成的列表
res_id_list = []
for single_res in summary_chunk_res:
res_id_list.append(single_res.metadata["doc_id"])
return res_id_list
def hypothetical_retriever(
self,
hypothetical_query_collection="hypothetical_query"
):
"""
对hypothetical_query设置检索器retriever
Returns:
"""
pass
def get_parent_document(
self,
doc_id_list: List[str],
parent_chunk: str = "parent_chunk"):
connections.connect(**self.milvus_connection_args)
collection = Collection(name=parent_chunk)
parent_chunk_list = []
for doc_id in doc_id_list:
# 向量查询
retrieved_res = collection.query(
expr=f"doc_id in ['{doc_id}']",
offset=0,
limit=10,
output_fields=["text"],
consistency_level="Strong"
)
parent_chunk_list.append(retrieved_res[0]["text"])
return parent_chunk_list
def build_prompt_get_answer(self, docs: List[str], stream=True):
"""
构建prompt并返回LLM的答案
"""
template = """
你是一个文档问答机器人,请仅仅根据下面指定文档列表中的多个文档来回答提出的问题,不能依赖自己的任何先验知识,如果在指定的文档中没有找到问题的答案,
请回答:'抱歉,本地知识库中暂无该问题相关的信息。'
{context}
问题:{question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI(temperature=0.1,
openai_api_key=openai_api_key,
openai_api_base=chat_openai_api_base,
model_name="qwen-14b-chat"
)
if stream:
llm_chain = prompt | model
answer = llm_chain.stream(
{"question": self.query, "context": docs})
for ret in answer:
yield ret.content
else:
chain = LLMChain(llm=model, prompt=prompt)
answer = chain.run({"question": self.query, "context": docs})
return answer
def build_rag(self, stream=True):
"""
构建RAG Pipeline
Returns:
"""
child_list = self.child_chunk_retriever()
summary_list = self.summary_retriever()
# 取交集
intersection_list = list(set(child_list) & set(summary_list))
parent_chunk_list = self.get_parent_document(
intersection_list if intersection_list else child_list)
if stream:
stream_res = self.build_prompt_get_answer(
parent_chunk_list, stream=stream)
for res in stream_res:
print(res, end="", flush=True)
else:
answer = self.build_prompt_get_answer(
parent_chunk_list, stream=stream)
return answer
def main():
while True:
input_prompt = "\n请输入内容(输入 'exit' 退出程序): "
query = input(input_prompt)
if query.lower() == "exit":
print("程序退出。")
break
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key, openai_api_base=emb_openai_api_base)
rag = RAG_pipeline(milvus_connection_args=connection_args, embeddings_model=embeddings, query=query)
rag.build_rag()
if __name__ == '__main__':
main()