|
331 | 331 | okdist = GeoStatsModels.predictprob(ok, (:a, :b, :c), pset[i])
|
332 | 332 | ukdist = GeoStatsModels.predictprob(uk, (:a, :b, :c), pset[i])
|
333 | 333 | dkdist = GeoStatsModels.predictprob(dk, (:a, :b, :c), pset[i])
|
334 |
| - @test mean.(skdist) ≈ [j == i for j in 1:3] |
335 |
| - @test mean.(okdist) ≈ [j == i for j in 1:3] |
336 |
| - @test mean.(ukdist) ≈ [j == i for j in 1:3] |
337 |
| - @test mean.(dkdist) ≈ [j == i for j in 1:3] |
338 |
| - @test isapprox(var.(skdist), [0.0, 0.0, 0.0], atol=1e-10) |
339 |
| - @test isapprox(var.(okdist), [0.0, 0.0, 0.0], atol=1e-10) |
340 |
| - @test isapprox(var.(ukdist), [0.0, 0.0, 0.0], atol=1e-10) |
341 |
| - @test isapprox(var.(dkdist), [0.0, 0.0, 0.0], atol=1e-10) |
| 334 | + @test mean(skdist) ≈ [j == i for j in 1:3] |
| 335 | + @test mean(okdist) ≈ [j == i for j in 1:3] |
| 336 | + @test mean(ukdist) ≈ [j == i for j in 1:3] |
| 337 | + @test mean(dkdist) ≈ [j == i for j in 1:3] |
| 338 | + @test isapprox(var(skdist), [0.0, 0.0, 0.0], atol=1e-8) |
| 339 | + @test isapprox(var(okdist), [0.0, 0.0, 0.0], atol=1e-8) |
| 340 | + @test isapprox(var(ukdist), [0.0, 0.0, 0.0], atol=1e-8) |
| 341 | + @test isapprox(var(dkdist), [0.0, 0.0, 0.0], atol=1e-8) |
342 | 342 | end
|
343 | 343 |
|
344 | 344 | # predict on a specific point
|
|
347 | 347 | okdist = GeoStatsModels.predictprob(ok, (:a, :b, :c), pₒ)
|
348 | 348 | ukdist = GeoStatsModels.predictprob(uk, (:a, :b, :c), pₒ)
|
349 | 349 | dkdist = GeoStatsModels.predictprob(dk, (:a, :b, :c), pₒ)
|
350 |
| - @test all(μ -> 0 ≤ μ ≤ 1, mean.(skdist)) |
351 |
| - @test all(μ -> 0 ≤ μ ≤ 1, mean.(okdist)) |
352 |
| - @test all(μ -> 0 ≤ μ ≤ 1, mean.(ukdist)) |
353 |
| - @test all(μ -> 0 ≤ μ ≤ 1, mean.(dkdist)) |
354 |
| - @test all(≥(0), var.(skdist)) |
355 |
| - @test all(≥(0), var.(okdist)) |
356 |
| - @test all(≥(0), var.(ukdist)) |
357 |
| - @test all(≥(0), var.(dkdist)) |
| 350 | + @test all(μ -> 0 ≤ μ ≤ 1, mean(skdist)) |
| 351 | + @test all(μ -> 0 ≤ μ ≤ 1, mean(okdist)) |
| 352 | + @test all(μ -> 0 ≤ μ ≤ 1, mean(ukdist)) |
| 353 | + @test all(μ -> 0 ≤ μ ≤ 1, mean(dkdist)) |
| 354 | + @test all(≥(0), var(skdist)) |
| 355 | + @test all(≥(0), var(okdist)) |
| 356 | + @test all(≥(0), var(ukdist)) |
| 357 | + @test all(≥(0), var(dkdist)) |
358 | 358 | end
|
359 | 359 |
|
360 | 360 | @testset "Transiogram" begin
|
|
369 | 369 |
|
370 | 370 | # interpolation property
|
371 | 371 | for i in 1:3
|
372 |
| - skdist = GeoStatsModels.predictprob(sk, (:a, :b, :c), pset[i]) |
373 |
| - okdist = GeoStatsModels.predictprob(ok, (:a, :b, :c), pset[i]) |
374 |
| - ukdist = GeoStatsModels.predictprob(uk, (:a, :b, :c), pset[i]) |
375 |
| - dkdist = GeoStatsModels.predictprob(dk, (:a, :b, :c), pset[i]) |
376 |
| - @test mean.(skdist) ≈ [j == i for j in 1:3] |
377 |
| - @test mean.(okdist) ≈ [j == i for j in 1:3] |
378 |
| - @test mean.(ukdist) ≈ [j == i for j in 1:3] |
379 |
| - @test mean.(dkdist) ≈ [j == i for j in 1:3] |
| 372 | + skmean = GeoStatsModels.predict(sk, (:a, :b, :c), pset[i]) |
| 373 | + okmean = GeoStatsModels.predict(ok, (:a, :b, :c), pset[i]) |
| 374 | + ukmean = GeoStatsModels.predict(uk, (:a, :b, :c), pset[i]) |
| 375 | + dkmean = GeoStatsModels.predict(dk, (:a, :b, :c), pset[i]) |
| 376 | + @test skmean ≈ [j == i for j in 1:3] |
| 377 | + @test okmean ≈ [j == i for j in 1:3] |
| 378 | + @test ukmean ≈ [j == i for j in 1:3] |
| 379 | + @test dkmean ≈ [j == i for j in 1:3] |
380 | 380 | end
|
381 | 381 |
|
382 | 382 | # predict on a specific point
|
383 | 383 | pₒ = Point(50.0, 50.0)
|
384 |
| - skdist = GeoStatsModels.predictprob(sk, (:a, :b, :c), pₒ) |
385 |
| - okdist = GeoStatsModels.predictprob(ok, (:a, :b, :c), pₒ) |
386 |
| - ukdist = GeoStatsModels.predictprob(uk, (:a, :b, :c), pₒ) |
387 |
| - dkdist = GeoStatsModels.predictprob(dk, (:a, :b, :c), pₒ) |
388 |
| - @test all(μ -> 0 ≤ μ ≤ 1, mean.(skdist)) |
389 |
| - @test all(μ -> 0 ≤ μ ≤ 1, mean.(okdist)) |
390 |
| - @test all(μ -> 0 ≤ μ ≤ 1, mean.(ukdist)) |
391 |
| - @test all(μ -> 0 ≤ μ ≤ 1, mean.(dkdist)) |
392 |
| - @test all(≥(0), var.(skdist)) |
393 |
| - @test all(≥(0), var.(okdist)) |
394 |
| - @test all(≥(0), var.(ukdist)) |
395 |
| - @test all(≥(0), var.(dkdist)) |
| 384 | + skmean = GeoStatsModels.predict(sk, (:a, :b, :c), pₒ) |
| 385 | + okmean = GeoStatsModels.predict(ok, (:a, :b, :c), pₒ) |
| 386 | + ukmean = GeoStatsModels.predict(uk, (:a, :b, :c), pₒ) |
| 387 | + dkmean = GeoStatsModels.predict(dk, (:a, :b, :c), pₒ) |
| 388 | + @test all(μ -> 0 ≤ μ ≤ 1, skmean) |
| 389 | + @test all(μ -> 0 ≤ μ ≤ 1, okmean) |
| 390 | + @test all(μ -> 0 ≤ μ ≤ 1, ukmean) |
| 391 | + @test all(μ -> 0 ≤ μ ≤ 1, dkmean) |
396 | 392 | end
|
397 | 393 |
|
398 | 394 | @testset "Fallbacks" begin
|
|
0 commit comments