hint: import … as
hint: np.__version__, np.show_config)
hint: np.zeros
hint: size, itemsize
hint: np.info
hint: array[4]
hint: arange
hint: array[::-1]
hint: reshape
hint: np.nonzero
hint: np.eye
hint: np.random.random
hint: min, max
hint: mean
hint: array[1:-1, 1:-1]
hint: np.pad
0 * np.nan
np.nan == np.nan
np.inf > np.nan
np.nan - np.nan
np.nan in set([np.nan])
0.3 == 3 * 0.1
hint: NaN = not a number, inf = infinity
hint: np.diag
hint: array[::2]
hint: np.unravel_index
hint: np.tile
hint: (x -mean)/std
hint: np.dtype
hint:
hint: >, <
# Author: Jake VanderPlas
print(sum(range(5),-1))
from numpy import *
print(sum(range(5),-1))
hint: np.sum
Z**Z
2 << Z >> 2
Z <- Z
1j*Z
Z/1/1
Z<Z>Z
No hints provided...
np.array(0) / np.array(0)
np.array(0) // np.array(0)
np.array([np.nan]).astype(int).astype(float)
No hints provided...
hint: np.uniform, np.copysign, np.ceil, np.abs, np.where
hint: np.intersect1d
hint: np.seterr, np.errstate
np.sqrt(-1) == np.emath.sqrt(-1)
hint: imaginary number
hint: np.datetime64, np.timedelta64
hint: np.arange(dtype=datetime64['D'])
hint: np.add(out=), np.negative(out=), np.multiply(out=), np.divide(out=)
hint: %, np.floor, astype, np.trunc
hint: np.arange
hint: np.fromiter
hint: np.linspace
hint: sort
hint: np.add.reduce
hint: np.allclose, np.array_equal
hint: flags.writeable
44. Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆)
hint: np.sqrt, np.arctan2
hint: argmax
hint: np.meshgrid
hint: np.subtract.outer
hint: np.iinfo, np.finfo, eps
hint: np.set_printoptions
hint: argmin
hint: dtype
52. Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆)
hint: np.atleast_2d, T, np.sqrt
hint: view and [:] =
1, 2, 3, 4, 5
6, , , 7, 8
, , 9,10,11
hint: np.genfromtxt
hint: np.ndenumerate, np.ndindex
hint: np.meshgrid, np.exp
hint: np.put, np.random.choice
hint: mean(axis=,keepdims=)
hint: argsort
hint: any, ~
hint: np.abs, argmin, flat
62. Considering two arrays with shape (1,3) and (3,1), how to compute their sum using an iterator? (★★☆)
hint: np.nditer
hint: class method
64. Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices)? (★★★)
hint: np.bincount | np.add.at
hint: np.bincount
hint: np.unique
hint: sum(axis=(-2,-1))
68. Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices? (★★★)
hint: np.bincount
hint: np.diag
70. Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value? (★★★)
hint: array[::4]
71. Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5)? (★★★)
hint: array[:, :, None]
hint: array[[]] = array[[]]
73. Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★)
hint: repeat, np.roll, np.sort, view, np.unique
74. Given a sorted array C that corresponds to a bincount, how to produce an array A such that np.bincount(A) == C? (★★★)
hint: np.repeat
hint: np.cumsum
76. Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★)
hint: from numpy.lib import stride_tricks
hint: np.logical_not, np.negative
78. Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i])? (★★★)
No hints provided...
79. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i])? (★★★)
No hints provided...
80. Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a fill
value when necessary) (★★★)
hint: minimum maximum
81. Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]]? (★★★)
hint: stride_tricks.as_strided
hint: np.linalg.svd
hint: np.bincount, argmax
hint: stride_tricks.as_strided
hint: class method
86. Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). How to compute the sum of of the p matrix products at once? (result has shape (n,1)) (★★★)
hint: np.tensordot
hint: np.add.reduceat
No hints provided...
hint: np.argsort | np.argpartition
90. Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★)
hint: np.indices
hint: np.core.records.fromarrays
hint: np.power, *, np.einsum
93. Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B? (★★★)
hint: np.where
No hints provided...
hint: np.unpackbits
hint: np.ascontiguousarray | np.unique
97. Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★)
hint: np.einsum
98. Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★)?
hint: np.cumsum, np.interp
99. Given an integer n and a 2D array X, select from X the rows which can be interpreted as draws from a multinomial distribution with n degrees, i.e., the rows which only contain integers and which sum to n. (★★★)
hint: np.logical_and.reduce, np.mod
100. Compute bootstrapped 95% confidence intervals for the mean of a 1D array X (i.e., resample the elements of an array with replacement N times, compute the mean of each sample, and then compute percentiles over the means). (★★★)
hint: np.percentile