|
72 | 72 | ]
|
73 | 73 | },
|
74 | 74 | {
|
75 |
| - "attachments": {}, |
76 | 75 | "cell_type": "markdown",
|
77 | 76 | "metadata": {
|
78 | 77 | "id": "kNTG2a_kf5gS"
|
|
124 | 123 | ]
|
125 | 124 | },
|
126 | 125 | {
|
127 |
| - "attachments": {}, |
128 | 126 | "cell_type": "markdown",
|
129 | 127 | "metadata": {
|
130 | 128 | "id": "vVE2JK9Af5gW"
|
|
165 | 163 | ]
|
166 | 164 | },
|
167 | 165 | {
|
168 |
| - "attachments": {}, |
169 | 166 | "cell_type": "markdown",
|
170 | 167 | "metadata": {
|
171 | 168 | "id": "h9mAHJU1f5gX"
|
|
217 | 214 | ]
|
218 | 215 | },
|
219 | 216 | {
|
220 |
| - "attachments": {}, |
221 | 217 | "cell_type": "markdown",
|
222 | 218 | "metadata": {
|
223 | 219 | "id": "rdBVk3fyf5gZ"
|
|
363 | 359 | ]
|
364 | 360 | },
|
365 | 361 | {
|
366 |
| - "attachments": {}, |
367 | 362 | "cell_type": "markdown",
|
368 | 363 | "metadata": {
|
369 | 364 | "id": "SyA46Ie6f5gc"
|
|
470 | 465 | ]
|
471 | 466 | },
|
472 | 467 | {
|
473 |
| - "attachments": {}, |
474 | 468 | "cell_type": "markdown",
|
475 | 469 | "metadata": {
|
476 | 470 | "id": "KLKHwCjOf5gg"
|
|
594 | 588 | ]
|
595 | 589 | },
|
596 | 590 | {
|
597 |
| - "attachments": {}, |
598 | 591 | "cell_type": "markdown",
|
599 | 592 | "metadata": {
|
600 | 593 | "id": "jGL-HbYlf5gi"
|
|
1125 | 1118 | ]
|
1126 | 1119 | },
|
1127 | 1120 | {
|
1128 |
| - "attachments": {}, |
1129 | 1121 | "cell_type": "markdown",
|
1130 | 1122 | "metadata": {
|
1131 | 1123 | "id": "roRmlg_nf5gl"
|
|
1476 | 1468 | ]
|
1477 | 1469 | },
|
1478 | 1470 | {
|
1479 |
| - "attachments": {}, |
1480 | 1471 | "cell_type": "markdown",
|
1481 | 1472 | "metadata": {
|
1482 | 1473 | "id": "r5ZnoZIG26K_"
|
|
1574 | 1565 | ]
|
1575 | 1566 | },
|
1576 | 1567 | {
|
1577 |
| - "attachments": {}, |
1578 | 1568 | "cell_type": "markdown",
|
1579 | 1569 | "metadata": {
|
1580 | 1570 | "id": "hc7pkVqe4qNw"
|
|
1612 | 1602 | "fi = pd.concat([fi_classical, fi_gbm, fi_transformer], axis=1)"
|
1613 | 1603 | ]
|
1614 | 1604 | },
|
| 1605 | + { |
| 1606 | + "cell_type": "code", |
| 1607 | + "execution_count": null, |
| 1608 | + "metadata": { |
| 1609 | + "tags": [] |
| 1610 | + }, |
| 1611 | + "outputs": [], |
| 1612 | + "source": [ |
| 1613 | + "fi" |
| 1614 | + ] |
| 1615 | + }, |
1615 | 1616 | {
|
1616 | 1617 | "cell_type": "code",
|
1617 | 1618 | "execution_count": null,
|
|
1626 | 1627 | "ind = np.arange(len(fi))\n",
|
1627 | 1628 | "width = 0.25\n",
|
1628 | 1629 | "\n",
|
1629 |
| - "axes[0].barh(ind, fi[\"quote(best)->quote(ex) values\"], width, xerr=fi[\"quote(best)->quote(ex) std\"], label=\"Classical\")\n", |
1630 |
| - "axes[0].barh(ind+width, fi[\"gbm(classical) values\"], width, xerr=fi[\"gbm(classical) std\"], label=\"GBRT\")\n", |
1631 |
| - "axes[0].barh(ind+width + width, fi[\"fttransformer(classical) values\"], width, xerr=fi[\"fttransformer(classical) std\"], label=\"Transformer\")\n", |
| 1630 | + "axes[0].barh(ind, fi[\"quote(best)->quote(ex)->rev_tick(all) values\"].abs(), width, xerr=fi[\"quote(best)->quote(ex)->rev_tick(all) std\"], label=\"Classical\")\n", |
| 1631 | + "axes[0].barh(ind+width, fi[\"gbm(classical) values\"].abs(), width, xerr=fi[\"gbm(classical) std\"], label=\"GBRT\")\n", |
| 1632 | + "axes[0].barh(ind+width + width, fi[\"fttransformer(classical) values\"].abs(), width, xerr=fi[\"fttransformer(classical) std\"], label=\"Transformer\")\n", |
1632 | 1633 | "axes[0].axvline(0, color='black', linestyle='--', linewidth=0.5)\n",
|
1633 |
| - "axes[0].set_xlim([-0.15,0.15])\n", |
| 1634 | + "axes[0].set_xlim([0,0.15])\n", |
1634 | 1635 | "\n",
|
1635 |
| - "axes[1].barh(ind, fi[\"trade_size(ex)->quote(best)->quote(ex)->depth(best)->depth(ex)->rev_tick(all) values\"], width, xerr=fi[\"trade_size(ex)->quote(best)->quote(ex)->depth(best)->depth(ex)->rev_tick(all) std\"], label=\"Classical\")\n", |
1636 |
| - "axes[1].barh(ind+width, fi[\"gbm(classical-size) values\"], width, xerr=fi[\"gbm(classical-size) std\"], label=\"GBRT\")\n", |
1637 |
| - "axes[1].barh(ind+width + width, fi[\"fttransformer(classical-size) values\"], width, xerr=fi[\"fttransformer(classical-size) std\"], label=\"Transformer\")\n", |
| 1636 | + "axes[1].barh(ind, fi[\"trade_size(ex)->quote(best)->quote(ex)->depth(best)->depth(ex)->rev_tick(all) values\"].abs(), width, xerr=fi[\"trade_size(ex)->quote(best)->quote(ex)->depth(best)->depth(ex)->rev_tick(all) std\"], label=\"Classical\")\n", |
| 1637 | + "axes[1].barh(ind+width, fi[\"gbm(classical-size) values\"].abs(), width, xerr=fi[\"gbm(classical-size) std\"], label=\"GBRT\")\n", |
| 1638 | + "axes[1].barh(ind+width + width, fi[\"fttransformer(classical-size) values\"].abs(), width, xerr=fi[\"fttransformer(classical-size) std\"], label=\"Transformer\")\n", |
1638 | 1639 | "axes[1].axvline(0, color='black', linestyle='--', linewidth=0.5)\n",
|
1639 |
| - "axes[1].set_xlim([-0.15,0.15])\n", |
| 1640 | + "axes[1].set_xlim([0,0.15])\n", |
1640 | 1641 | "\n",
|
1641 |
| - "axes[2].barh(ind, fi[\"trade_size(ex)->quote(best)->quote(ex)->depth(best)->depth(ex)->rev_tick(all) values\"], width, xerr=fi[\"trade_size(ex)->quote(best)->quote(ex)->depth(best)->depth(ex)->rev_tick(all) std\"], label=\"Classical\")\n", |
1642 |
| - "axes[2].barh(ind+width, fi[\"gbm(ml) values\"], width, xerr=fi[\"gbm(ml) std\"], label=\"GBRT\")\n", |
1643 |
| - "axes[2].barh(ind+width + width, fi[\"fttransformer(ml) values\"], width, xerr=fi[\"fttransformer(ml) std\"], label=\"Transformer\")\n", |
| 1642 | + "axes[2].barh(ind, fi[\"trade_size(ex)->quote(best)->quote(ex)->depth(best)->depth(ex)->rev_tick(all) values\"].abs(), width, xerr=fi[\"trade_size(ex)->quote(best)->quote(ex)->depth(best)->depth(ex)->rev_tick(all) std\"], label=\"Classical\")\n", |
| 1643 | + "axes[2].barh(ind+width, fi[\"gbm(ml) values\"].abs(), width, xerr=fi[\"gbm(ml) std\"], label=\"GBRT\")\n", |
| 1644 | + "axes[2].barh(ind+width + width, fi[\"fttransformer(ml) values\"].abs(), width, xerr=fi[\"fttransformer(ml) std\"], label=\"Transformer\")\n", |
1644 | 1645 | "axes[2].axvline(0, color='black', linestyle='--', linewidth=0.5)\n",
|
1645 |
| - "axes[2].set_xlim([-0.15,0.15])\n", |
| 1646 | + "axes[2].set_xlim([0.0,0.15])\n", |
1646 | 1647 | "\n",
|
1647 | 1648 | "\n",
|
1648 | 1649 | "# set y-labels\n",
|
1649 | 1650 | "labels = ['Price Lead All', 'Price Lag All', 'Price Lead Ex', 'Price Lag Ex', 'Quotes NBBO', 'Quotes Ex', 'Trade Price', \"Quotes Size\", 'Trade Size', 'Strike Price', 'Time To Maturity', 'Option Type', 'Root', 'Moneyness', \"Day Volume\", 'Issue Type']\n",
|
1650 | 1651 | "axes[0].set(yticks=ind + width, yticklabels=labels, ylim=[2*width - 1, len(fi)])\n",
|
1651 | 1652 | "\n",
|
1652 | 1653 | "# set x-labels\n",
|
1653 |
| - "axes[0].set_xlabel(\"SAGE Value\")\n", |
1654 |
| - "axes[1].set_xlabel(\"SAGE Value\")\n", |
1655 |
| - "axes[2].set_xlabel(\"SAGE Value\")\n", |
| 1654 | + "axes[0].set_xlabel(r\"\\textbar SAGE Value\\textbar\")\n", |
| 1655 | + "axes[1].set_xlabel(r\"\\textbar SAGE Value\\textbar\")\n", |
| 1656 | + "axes[2].set_xlabel(r\"\\textbar SAGE Value\\textbar\")\n", |
1656 | 1657 | "\n",
|
1657 | 1658 | "# set y-labels\n",
|
1658 | 1659 | "axes[0].set_title(\"Set Classical\")\n",
|
1659 |
| - "axes[1].set_title(\"Set Classical-Size\")\n", |
| 1660 | + "axes[1].set_title(\"Set Size\")\n", |
1660 | 1661 | "axes[2].set_title(\"Set Options\")\n",
|
1661 | 1662 | "\n",
|
1662 | 1663 | "handles, labels = axes[0].get_legend_handles_labels()\n",
|
|
1666 | 1667 | "\n",
|
1667 | 1668 | "plt.savefig(f\"../reports/Graphs/sage-importances.pdf\", bbox_inches=\"tight\")"
|
1668 | 1669 | ]
|
| 1670 | + }, |
| 1671 | + { |
| 1672 | + "cell_type": "code", |
| 1673 | + "execution_count": null, |
| 1674 | + "metadata": {}, |
| 1675 | + "outputs": [], |
| 1676 | + "source": [] |
1669 | 1677 | }
|
1670 | 1678 | ],
|
1671 | 1679 | "metadata": {
|
1672 | 1680 | "colab": {
|
1673 | 1681 | "provenance": []
|
1674 | 1682 | },
|
1675 | 1683 | "kernelspec": {
|
1676 |
| - "display_name": "Python 3", |
| 1684 | + "display_name": "Python 3 (ipykernel)", |
1677 | 1685 | "language": "python",
|
1678 | 1686 | "name": "python3"
|
1679 | 1687 | },
|
|
1687 | 1695 | "name": "python",
|
1688 | 1696 | "nbconvert_exporter": "python",
|
1689 | 1697 | "pygments_lexer": "ipython3",
|
1690 |
| - "version": "3.9.4" |
| 1698 | + "version": "3.9.7" |
1691 | 1699 | }
|
1692 | 1700 | },
|
1693 | 1701 | "nbformat": 4,
|
|
0 commit comments