forked from chaomath/open3d-kitti-visualization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_object_csv.py
111 lines (92 loc) · 3.31 KB
/
export_object_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import argparse
import os
from io import TextIOWrapper
import numpy as np
import open3d as o3d
from math import cos, sin
from object_info import ObjectInfo
import time
from kitti_utils import load_kitti_calib, read_objs2velo, class_list
def crop_kitti(data_path: str, out_file: str):
file = open(out_file, "w")
file.write(ObjectInfo.get_csv_header() + "\n")
time_start = time.time()
for frame in range(0, 7481):
print(f"\rProcessing frame {frame+1} / 7481", end="")
crop_kitti_frame(data_path, frame, file)
time_end = time.time()
print(f"\nTime elapsed: {time_end - time_start} seconds")
file.close()
def crop_kitti_frame(data_path: str, frame: int, file: TextIOWrapper):
# get data
lidar_path = os.path.join(data_path, 'velodyne')
label_path = os.path.join(data_path, 'label_2')
calib_path = os.path.join(data_path, 'calib')
lidar_file = os.path.join(lidar_path, f'{frame:06d}.bin')
label_file = os.path.join(label_path, f'{frame:06d}.txt')
calib_file = os.path.join(calib_path, f'{frame:06d}.txt')
# get calibration
calib = load_kitti_calib(calib_file)
# get points and boxes
boxes_velo, objs_type = read_objs2velo(label_file, calib['Tr_velo2cam'])
points = np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)
box = boxes_velo[0]
for box, obj_type in zip(boxes_velo, objs_type):
L = box[2]
W = box[1]
H = box[0]
X = box[3]
Y = box[4]
Z = box[5]
Theta = box[6]
vol = o3d.visualization.SelectionPolygonVolume()
vol.orthogonal_axis = "Z"
vol.axis_max = Z + H
vol.axis_min = Z
vol.bounding_polygon = o3d.utility.Vector3dVector(np.array([
[
L/2*cos(Theta)-W/2*sin(Theta)+X,
L/2*sin(Theta)+W/2*cos(Theta)+Y,
0
],
[
L/2*cos(Theta)+W/2*sin(Theta)+X,
L/2*sin(Theta)-W/2*cos(Theta)+Y,
0
],
[
-L/2*cos(Theta)+W/2*sin(Theta)+X,
-L/2*sin(Theta)-W/2*cos(Theta)+Y,
0
],
[
-L/2*cos(Theta)-W/2*sin(Theta)+X,
-L/2*sin(Theta)+W/2*cos(Theta)+Y,
0
]
], dtype=np.float64))
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points[:, :3])
pcd_crop = vol.crop_point_cloud(pcd)
write_object_info(box, pcd_crop, obj_type, frame, file)
def write_object_info(
box: list, pcd, obj_type: int, frame: int, file: TextIOWrapper):
obj_type_name = class_list[obj_type]
new_obj = ObjectInfo.create(box, pcd, obj_type_name, frame)
file.write(new_obj.to_csv_line() + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--data", "--d", type=str,
default="./data/KITTI/training", help="kitti data path")
# parser.add_argument(
# "--frame", "--f", type=int,
# default=500, help="frame of the data")
parser.add_argument(
"--out", "--o", type=str,
default="./output.csv", help="output csv file")
opt = parser.parse_args()
data_path = opt.data
# frame = opt.frame
out_file = opt.out
crop_kitti(data_path, out_file)