forked from chaomath/open3d-kitti-visualization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
53 lines (40 loc) · 1.63 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import argparse
import os
import numpy as np
from kitti_utils import load_kitti_calib, read_objs2velo, colors_list
from PointCloudVis import PointCloudVis
def vis_kitti(data_path, frame):
# get data
lidar_path = os.path.join(data_path, 'velodyne')
label_path = os.path.join(data_path, 'label_2')
calib_path = os.path.join(data_path, 'calib')
lidar_file = os.path.join(lidar_path, '%06d.bin' % frame)
label_file = os.path.join(label_path, '%06d.txt' % frame)
calib_file = os.path.join(calib_path, '%06d.txt' % frame)
# get calibration
calib = load_kitti_calib(calib_file)
# get points and boxes
boxes_velo, objs_type = read_objs2velo(label_file, calib['Tr_velo2cam'])
points = np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)
# --------------------------------------------------------------
# get colors for each box
# --------------------------------------------------------------
box_colors = []
if len(objs_type) == 0:
box_colors = [[1, 0, 0] for i in range(boxes_velo.shape[0])] # red
else:
box_colors = [colors_list[int(i)] for i in objs_type]
# draw boxes with arrows
PointCloudVis.draw_points_with_boxes(points, boxes_velo, box_colors)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--data", "--d", type=str,
default="./data/KITTI/training", help="kitti data path")
parser.add_argument(
"--frame", "--f", type=int,
default=500, help="frame of the data")
opt = parser.parse_args()
data_path = opt.data
frame = opt.frame
vis_kitti(data_path, frame)