-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmain.py
272 lines (223 loc) · 9.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import cv2
import numpy as np
import time
import utils
from argparse import ArgumentParser
from collections import deque
from face_pose.pose_estimator import PoseEstimator
from face_pose.stabilizer import Stabilizer
from sock import Socket
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
def run():
# Get operating system
os = utils.get_os()
if os == 'Windows': # Windows OS
cap = cv2.VideoCapture(args.cam + cv2.CAP_DSHOW)
else: # Linux & Mac OS
cap = cv2.VideoCapture(args.cam)
cap.set(cv2.CAP_PROP_FPS, 30)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
_, sample_frame = cap.read()
# Setup face detection models
if not args.gpu: # CPU: use dlib
import dlib
dlib_model_path = 'face_pose/shape_predictor_68_face_landmarks.dat'
shape_predictor = dlib.shape_predictor(dlib_model_path)
face_detector = dlib.get_frontal_face_detector()
else: # GPU: use FAN (better)
import face_alignment
if os == 'Darwin': # MacOS
fa = face_alignment.FaceAlignment(
face_alignment.LandmarksType._2D, device='mps')
else: # Windows, Linux
fa = face_alignment.FaceAlignment(
face_alignment.LandmarksType._2D, device='cuda')
face_detector = fa.face_detector
# Introduce pose estimator to solve pose, get one frame to setup the estimator according to the image size
pose_estimator = PoseEstimator(img_size=sample_frame.shape[:2])
# Introduce scalar stabilizers for pose
pose_stabilizers = [Stabilizer(
state_num=2,
measure_num=1,
cov_process=0.01,
cov_measure=0.1) for _ in range(8)]
# Establish a TCP connection to Unity
if args.connect:
address = ('127.0.0.1', args.port)
sock = Socket()
sock.connect(address)
ts = []
frame_count = 0
no_face_count = 0
prev_boxes = deque(maxlen=5)
prev_marks = deque(maxlen=5)
while True:
# Get frames
_, frame = cap.read()
frame = cv2.flip(frame, 2)
frame_count += 1
# Send message data to Unity client
if args.connect and frame_count > 60:
sock.conv2msg()
sock.send()
t = time.time()
# Loop
# 1. Face detection, draw face and iris landmarks
# 2. Pose estimation and stabilization (face + iris), calculate and calibrate data if error is low
# 3. Data transmission with socket
# Face detection on every odd frame
if frame_count % 2 == 1:
facebox = utils.get_face(face_detector, frame, args.gpu)
if facebox is not None:
no_face_count = 0
else:
if len(prev_boxes) > 1: # use a linear movement assumption
# Estimate no more than 1 frame
if no_face_count > 1:
facebox = None
else:
facebox = prev_boxes[-1] + \
np.mean(
np.diff(np.array(prev_boxes), axis=0), axis=0)[0]
facebox = facebox.astype(int)
no_face_count += 1
# Face is detected
if facebox is not None:
prev_boxes.append(facebox)
# Mark face and iris on each frame
if not args.gpu:
face = dlib.rectangle(left=facebox[0], top=facebox[1],
right=facebox[2], bottom=facebox[3])
marks = utils.shape_to_np(shape_predictor(frame, face))
else:
# Draw landmarks on first frame or each even frame
if len(prev_marks) == 0 \
or frame_count == 1 \
or frame_count % 2 == 0:
face_img = frame[facebox[1]: facebox[3],
facebox[0]: facebox[2]]
marks = fa.get_landmarks(face_img[:, :, ::-1],
detected_faces=[(0, 0, facebox[2] - facebox[0], facebox[3] - facebox[1])])
marks = marks[-1]
marks[:, 0] += facebox[0]
marks[:, 1] += facebox[1]
else:
if len(prev_marks) > 1: # use a linear movement assumption
marks = prev_marks[-1] + \
np.mean(
np.diff(np.array(prev_marks), axis=0), axis=0)
prev_marks.append(marks)
x_l, y_l, ll, lu = utils.detect_iris(frame, marks, "left")
x_r, y_r, rl, ru = utils.detect_iris(frame, marks, "right")
# Pose estimation with 68 points
error, R, T = pose_estimator.solve_pose_by_68_points(marks)
pose = list(R) + list(T)
# Stabilize iris position
pose += [(ll + rl) / 2.0, (lu + ru) / 2.0]
# Large error means tracking fails: reinitialize pose estimator
if error > 100:
# At the same time, keep sending the same information (e.g. same roll)
pose_estimator = PoseEstimator(img_size=sample_frame.shape[:2])
else:
# Stabilize the pose
steady_pose = []
pose_np = np.array(pose, dtype=object).flatten()
for value, ps_stb in zip(pose_np, pose_stabilizers):
ps_stb.update([value])
steady_pose.append(ps_stb.state[0])
if args.connect:
# head
roll = np.clip(
-(180 + np.degrees(steady_pose[2])), -50, 50)
pitch = np.clip(
-(np.degrees(steady_pose[1])), -50, 50)
yaw = np.clip(-(np.degrees(steady_pose[0])), -50, 50)
# eyes
earLeft = utils.eye_aspect_ratio(marks[36:42])
earRight = utils.eye_aspect_ratio(marks[42:48])
eyeballX = steady_pose[6]
eyeballY = steady_pose[7]
# eyebrows
barLeft = utils.brow_aspect_ratio(marks[17:22])
barRight = utils.brow_aspect_ratio(marks[22:27])
# mouth
mouthWidthRatio = utils.mouth_distance(
marks[60:68]) / (facebox[2] - facebox[0])
mouthOpen = utils.mouth_aspect_ratio(marks[60:68])
# Calibration before data transmission
# eye openness
eyeOpenLeft = utils.calibrate_eyeOpen(
earLeft, sock.eyeOpenLeftLast, args.gpu)
eyeOpenRight = utils.calibrate_eyeOpen(
earRight, sock.eyeOpenRightLast, args.gpu)
# eyeballs
eyeballX, eyeballY = utils.calibrate_eyeball(
eyeballX, eyeballY)
# eyebrows
eyebrowLeft = utils.calibrate_eyebrow(
barLeft, sock.eyebrowLeftLast, args.gpu)
eyebrowRight = utils.calibrate_eyebrow(
barRight, sock.eyebrowRightLast, args.gpu)
# mouth width
mouthWidth = utils.calibrate_mouthWidth(
mouthWidthRatio, args.gpu)
# Update
sock.update_all(roll, pitch, yaw, eyeOpenLeft, eyeOpenRight, eyeballX,
eyeballY, eyebrowLeft, eyebrowRight, mouthWidth, mouthOpen)
# In debug mode, show the marks
if args.debug:
# Show facebox
# utils.draw_box(frame, [facebox])
# Show iris
if x_l > 0 and y_l > 0:
utils.draw_iris(frame, x_l, y_l, color=(0, 255, 255))
if x_r > 0 and y_r > 0:
utils.draw_iris(frame, x_r, y_r, color=(0, 255, 255))
if error < 100:
# Show face landmarks
utils.draw_marks(
frame, marks, color=(255, 255, 0)) # cyan
# Show frame of stable pose
pose_estimator.draw_annotation_box(
frame, np.expand_dims(steady_pose[:3], 0), np.expand_dims(
steady_pose[3:6], 0),
color=(203, 192, 255)) # pink
# Draw head axes on frame
pose_estimator.draw_axes(frame, np.expand_dims(steady_pose[:3], 0),
np.expand_dims(steady_pose[3:6], 0))
dt = time.time() - t
ts += [dt]
FPS = int(1 / (np.mean(ts[-10:]) + 1e-6))
print('\r', 'Time: %.3f' % dt, end=' ')
if args.debug:
utils.draw_FPS(frame, FPS)
cv2.imshow("face", frame)
if cv2.waitKey(1) & 0xFF == ord('q'): # press q to exit
break
# Close all if program is terminated
cap.release()
if args.connect:
sock.close()
if args.debug:
cv2.destroyAllWindows()
print('Time: %.3f' % np.mean(ts))
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--cam", type=int,
help="specify the index of camera if there are multiple cameras",
default=0)
parser.add_argument("--debug", action="store_true",
help="show image and marks",
default=False)
parser.add_argument("--gpu", action="store_true",
help="use GPU to do face detection and face landmark detection",
default=False)
parser.add_argument("--connect", action="store_true",
help="connect to unity character",
default=False)
parser.add_argument("--port", type=int,
help="set port number to connect",
default=14514)
args = parser.parse_args()
run()