-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathindexing.py
62 lines (47 loc) · 1.86 KB
/
indexing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import time
from argparse import ArgumentParser
import faiss
import torch
from torch.utils.data import DataLoader, SequentialSampler
from src.feature_extraction import MyResnet50, MyVGG16, RGBHistogram, LBP
from src.indexing import get_faiss_indexer
from src.dataloader import MyDataLoader
image_root = './dataset/paris'
feature_root = './dataset/feature'
def main():
parser = ArgumentParser()
parser.add_argument("--feature_extractor", required=True, type=str, default='Resnet50')
parser.add_argument("--device", required=False, type=str, default='cuda:0')
parser.add_argument("--batch_size", required=False, type=int, default=64)
print('Start indexing .......')
start = time.time()
args = parser.parse_args()
device = torch.device(args.device)
batch_size = args.batch_size
# Load module feature extraction
if (args.feature_extractor == 'Resnet50'):
extractor = MyResnet50(device)
elif (args.feature_extractor == 'VGG16'):
extractor = MyVGG16(device)
elif (args.feature_extractor == 'RGBHistogram'):
extractor = RGBHistogram(device)
elif (args.feature_extractor == 'LBP'):
extractor = LBP(device)
else:
print("No matching model found")
return
dataset = MyDataLoader(image_root)
sampler = SequentialSampler(dataset)
dataloader = DataLoader(dataset,batch_size=batch_size,sampler=sampler)
indexer = get_faiss_indexer(extractor.shape)
for images, image_paths in dataloader:
images = images.to(device)
features = extractor.extract_features(images)
# print(features.shape)
indexer.add(features)
# Save features
faiss.write_index(indexer, feature_root + '/' + args.feature_extractor + '.index.bin')
end = time.time()
print('Finish in ' + str(end - start) + ' seconds')
if __name__ == '__main__':
main()