-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
353 lines (278 loc) · 11.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import imageio as imageio
from scipy import fftpack
import numpy as np
from PIL import Image, ImageDraw, ImageOps, ImageChops
import matplotlib.pyplot as plt
import math
import cv2 as cv
print("---------Computer Vision Project---------")
print("1-Image segmentation")
print("2-Band reject filter")
print("3-Histogram Equalization")
print("4-Display the Histogram")
print("5-Apply a given filter")
print("6-Brightness or Darkness")
def K_Means():
Org_img = Image.open("Image_to_be_segmented.jpg")
Org_img.thumbnail((300, 300))
Org_img = np.array(Org_img)
w, h, c = Org_img.shape
print(w, h, c)
# reshaping the image into 1d array with values r,g,b
img = Org_img.reshape(w * h, c)
def Init_Centroids(k):
idx = [np.random.randint(w * h) for i in range(k)]
centroids = img[idx, :]
return centroids
def Calculate_Distance(p1, p2):
Distance = 0
Distance = np.sqrt(((p1[0] - p2[0]) ** 2) + ((p1[1] - p2[1]) ** 2) + ((p1[2] - p2[2]) ** 2))
return Distance
def AssignItemCentroid(Centroids):
centroids_dect = {}
for center in range(Centroids.shape[0]):
centroids_dect[center] = []
for i in range(img.shape[0]):
distance = [Calculate_Distance(img[i], Centroids[center]) for center in range(Centroids.shape[0])]
idx = distance.index(min(distance))
centroids_dect[idx].append(img[i])
img[i] = Centroids[idx]
return centroids_dect
def ComputeCentroidsMeans(Centroids, dict):
j = 0
for cluster in dict:
r, g, b = [0, 0, 0]
cnt = 1
for values in dict[cluster]:
r += values[0]
g += values[1]
b += values[2]
cnt += 1
r /= cnt
g /= cnt
b /= cnt
Centroids[j] = [r, g, b]
j += 1
return Centroids
def Run_KMeans():
Centroids = None
dect = None
k = 3
iterations = 1
Centroids = Init_Centroids(k)
for i in range(iterations):
dect = AssignItemCentroid(Centroids)
Centroids = ComputeCentroidsMeans(Centroids, dect)
Run_KMeans()
img2 = img.reshape(w, h, c)
img2 = Image.fromarray(img2)
img2.save("Image_After_Segmentation.png")
print("Image Saved")
def Band_Reject():
# open image
Original_Image = Image.open('Image_with_periodic_noise.jpg')
# convert image to numpy array
Original_Image_np = np.array(Original_Image)
# Create a low Reject filter image
x_position = Original_Image_np.shape[0]
y_position = Original_Image_np.shape[1]
# size of circle
Small_x = 40
Small_y = 40
Large_x = 100
Large_y = 100
# create a box
Small_box = ((x_position / 2) - (Small_x / 2), (y_position / 2) - (Small_y / 2), (x_position / 2) + (Small_x / 2),
(y_position / 2) + (Small_y / 2))
Large_box = ((x_position / 2) - (Large_x / 2), (y_position / 2) - (Large_y / 2), (x_position / 2) + (Large_x / 2),
(y_position / 2) + (Large_y / 2))
# create new fill image
Band_Reject_Filter = Image.new("L", (Original_Image_np.shape[1], Original_Image_np.shape[0]), color=1)
Band_Reject_Filter_Draw = ImageDraw.Draw(Band_Reject_Filter)
# draw the filter
Band_Reject_Filter_Draw.ellipse(Large_box, fill=0)
Band_Reject_Filter_Draw.ellipse(Small_box, fill=1)
# change filter to np array
Band_Reject_Filter_np = np.array(Band_Reject_Filter)
# plot the filter
plt.imshow(Band_Reject_Filter)
plt.show()
if Original_Image.mode == "RGB":
# split image into three channels
Red_Channel, Green_Channel, Blue_Channel = Original_Image.split()
Red_Channel_np = np.array(Red_Channel)
Green_Channel_np = np.array(Green_Channel)
Blue_Channel_np = np.array(Blue_Channel)
# fft of image
fft_Red = fftpack.fftshift(fftpack.fft2(Red_Channel_np))
fft_Green = fftpack.fftshift(fftpack.fft2(Green_Channel_np))
fft_Blue = fftpack.fftshift(fftpack.fft2(Blue_Channel_np))
# multiply both the images
Filtered_Red_Channel = np.multiply(fft_Red, Band_Reject_Filter_np)
Filtered_Green_Channel = np.multiply(fft_Green, Band_Reject_Filter_np)
Filtered_Blue_Channel = np.multiply(fft_Blue, Band_Reject_Filter_np)
# inverse fft to real number
Inverse_Red_Channel = np.real(fftpack.ifft2(fftpack.ifftshift(Filtered_Red_Channel)))
Inverse_Green_Channel = np.real(fftpack.ifft2(fftpack.ifftshift(Filtered_Green_Channel)))
Inverse_Blue_Channel = np.real(fftpack.ifft2(fftpack.ifftshift(Filtered_Blue_Channel)))
# find min and max color range
Inverse_Red_Channel_Range = np.maximum(0, np.minimum(Inverse_Red_Channel, 255))
Inverse_Green_Channel_Range = np.maximum(0, np.minimum(Inverse_Green_Channel, 255))
Inverse_Blue_Channel_Range = np.maximum(0, np.minimum(Inverse_Blue_Channel, 255))
# Change array to gray scale image
Inverse_Red_Channel_Image = Image.fromarray(Inverse_Red_Channel_Range).convert("L")
Inverse_Green_Channel_Image = Image.fromarray(Inverse_Green_Channel_Range).convert("L")
Inverse_Blue_Channel_Image = Image.fromarray(Inverse_Blue_Channel_Range).convert("L")
# merge 3 images
Final_Image = Image.merge("RGB",
(Inverse_Red_Channel_Image, Inverse_Green_Channel_Image, Inverse_Blue_Channel_Image))
# save image
Final_Image.save("'Image_without_periodic_noise_RGB.png'")
print("Image Saved")
else:
# change to gray scale
Original_Image = ImageOps.grayscale(Original_Image)
# convert image to numpy array
Original_Image_np = np.array(Original_Image)
# fft of image
fft_Original = fftpack.fftshift(fftpack.fft2(Original_Image_np))
# multiply both the images
Filtered_Original = np.multiply(fft_Original, Band_Reject_Filter_np)
# inverse fft to real number
Inverse_Original_Real = np.real(fftpack.ifft2(fftpack.ifftshift(Filtered_Original)))
# find min and max color range
Inverse_Original_Range = np.maximum(0, np.minimum(Inverse_Original_Real, 255))
# save the image
imageio.imsave('Image_without_periodic_noise_GS.png', Inverse_Original_Range.astype(np.uint8))
print("Image Saved")
def Histogram_Equa():
# 1. Open The Image & Get Image Pixels Matrix
original_img = Image.open("Image_before_equalization.jpg")
grayscale_img = ImageOps.grayscale(original_img)
# 2. Get Histogram Frequencies
image_histogram = grayscale_img.histogram()
# 3. Calculate Cumulative Sequence
def calc_cumulative(histogram_freq):
new_list = [0] * len(histogram_freq)
new_list[0] = histogram_freq[0]
for i in range(1, len(histogram_freq)):
new_list[i] = new_list[i - 1] + histogram_freq[i]
return new_list
# 4. Apply equalization math rule on histogram
def apply_equalization(cumulative_list):
x = 255 / (grayscale_img.width * grayscale_img.height)
new_list = []
for i in range(0, len(cumulative_list)):
new_list.append(x * (cumulative_list[i]))
return new_list
# 5. Make the img
def floor_list(img):
new_list = []
for i in range(len(img)):
new_list.append(math.floor(img[i]))
return new_list
img_after_equa = floor_list(apply_equalization(calc_cumulative(image_histogram)))
equalized_img = np.interp(grayscale_img, range(0, 256), img_after_equa)
cv.imwrite("Image_After_Equalization.png", equalized_img)
print("Image Saved")
def is_grayscale(imagee):
if imagee.mode not in ("L", "RGB"):
raise ValueError("Unsuported image mode")
if imagee.mode == "RGB":
rgb = imagee.split()
if ImageChops.difference(rgb[0], rgb[1]).getextrema()[1] != 0:
return False
if ImageChops.difference(rgb[0], rgb[2]).getextrema()[1] != 0:
return False
return True
def display_Histo(img):
val = is_grayscale(img)
if (val):
gray_img = ImageOps.grayscale(img)
gray_img.thumbnail((400, 400))
print(gray_img.histogram())
histoFreq = gray_img.histogram()
histoIndex = np.arange(256)
plt.bar(x=histoIndex, height=histoFreq)
plt.show()
else:
r, g, b = immmmg.split()
hr = r.histogram()
hg = g.histogram()
hb = b.histogram()
histoIR = np.arange(len(hr))
histoIG = np.arange(len(hg))
histoIB = np.arange(len(hb))
plt.figure(figsize=(10, 10))
plt.subplot(2, 2, 1)
plt.title("R Histogram")
plt.bar(histoIR, hr)
plt.subplot(2, 2, 2)
plt.title("G Histogram")
plt.bar(histoIG, hg)
plt.subplot(2, 2, 3)
plt.title("B Histogram")
plt.bar(histoIB, hb)
plt.show()
def Filter_Function(Filter_Par, Size):
Task_2_image = Image.open("Filter_Image1.jpg")
Pixels = Task_2_image.load()
filtered_image = Image.new("RGB", Task_2_image.size)
draw_image = ImageDraw.Draw(filtered_image)
for i in range(Size, Task_2_image.width - Size):
for j in range(Size, Task_2_image.height - Size):
colour_array = [0, 0, 0]
for a in range(Size):
for b in range(Size):
n = i + a - Size
m = j + b - Size
pixel = Pixels[n, m]
colour_array[0] += pixel[0] * Filter_Par[a][b]
colour_array[1] += pixel[1] * Filter_Par[a][b]
colour_array[2] += pixel[2] * Filter_Par[a][b]
draw_image.point((i, j), (int(colour_array[0]), int(colour_array[1]), int(colour_array[2])))
filtered_image.save("Image_After_Filter.png")
print("Image Saved")
def Brightness_or_Darkness_Function(mode, value):
Task_3_image = Image.open("Filter_Image1.jpg")
Pixels = Task_3_image.load()
Min_Value = 255
Max_Value = 0
rows = Task_3_image.size[0]
columns = Task_3_image.size[1]
if mode == "brightness":
offset_value = value
elif mode == "darkness":
offset_value = -value
Final_Image = Image.new("RGB", Task_3_image.size)
Img_draw = ImageDraw.Draw(Final_Image)
for ro in range(1, rows):
for co in range(1, columns):
pixel = Pixels[ro, co]
Avarage = (pixel[0] + pixel[1] + pixel[2]) / 3
New_value = Avarage + offset_value
New_Point = (int((pixel[0] * New_value) / (Avarage + 1)), int((pixel[1] * New_value) / (Avarage + 1)),
int((pixel[2] * New_value) / (Avarage + 1)))
Img_draw.point((ro, co), New_Point)
Final_Image.save("Image_After_Brightness_or_Darkness.png")
print("Image Saved")
Option = input('Please Enter The Option Number: ')
if Option == "1":
K_Means()
elif Option == "2":
Band_Reject()
elif Option == "3":
Histogram_Equa()
elif Option == "4":
immmmg = Image.open("Filter_Image1.jpg")
display_Histo(immmmg)
elif Option == "5":
Laplacian_Filter = [[0, -1, 0], [-1, 4, -1], [0, -1, 0]]
Blur_Filter = [[1 / 9, 1 / 9, 1 / 9], [1 / 9, 1 / 9, 1 / 9], [1 / 9, 1 / 9, 1 / 9]]
Sharpen_Filter = [[0, -0 / 5, 0], [-0 / 5, 3, -0 / 5], [0, -0 / 5, 0]]
size = len(Blur_Filter)
Filter_Function(Blur_Filter, size)
elif Option == "6":
Brightness_or_Darkness_Function("darkness", 100)
else:
print("Unavailable Option")