-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathVkVideoEncoder.cpp
1810 lines (1503 loc) · 90.7 KB
/
VkVideoEncoder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2022 NVIDIA Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <functional>
#include <vector>
#include "VkVideoEncoder/VkVideoEncoder.h"
#include "VkVideoCore/VulkanVideoCapabilities.h"
#include "nvidia_utils/vulkan/ycbcrvkinfo.h"
#include "nvidia_utils/vulkan/ycbcrvkinfo.h"
#include "VkVideoEncoder/VkEncoderConfigH264.h"
#include "VkVideoEncoder/VkEncoderConfigH265.h"
#include "VkVideoEncoder/VkEncoderConfigAV1.h"
#include "VkCodecUtils/YCbCrConvUtilsCpu.h"
#include "VkVideoCore/DecodeFrameBufferIf.h"
static size_t getFormatTexelSize(VkFormat format)
{
switch (format) {
case VK_FORMAT_R8_UINT:
case VK_FORMAT_R8_SINT:
case VK_FORMAT_R8_UNORM:
return 1;
case VK_FORMAT_R16_UINT:
case VK_FORMAT_R16_SINT:
return 2;
case VK_FORMAT_R32_UINT:
case VK_FORMAT_R32_SINT:
return 4;
default:
assert(!"unknown format");
return 0;
}
}
VkResult VkVideoEncoder::CreateVideoEncoder(const VulkanDeviceContext* vkDevCtx,
VkSharedBaseObj<EncoderConfig>& encoderConfig,
VkSharedBaseObj<VkVideoEncoder>& encoder)
{
if (encoderConfig->codec == VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR) {
return CreateVideoEncoderH264(vkDevCtx, encoderConfig, encoder);
} else if (encoderConfig->codec == VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR) {
return CreateVideoEncoderH265(vkDevCtx, encoderConfig, encoder);
} else if (encoderConfig->codec == VK_VIDEO_CODEC_OPERATION_ENCODE_AV1_BIT_KHR) {
return CreateVideoEncoderAV1(vkDevCtx, encoderConfig, encoder);
}
return VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR;
}
const uint8_t* VkVideoEncoder::setPlaneOffset(const uint8_t* pFrameData, size_t bufferSize, size_t ¤tReadOffset)
{
const uint8_t* buf = pFrameData + currentReadOffset;
currentReadOffset += bufferSize;
return buf;
}
VkResult VkVideoEncoder::LoadNextQpMapFrameFromFile(VkSharedBaseObj<VkVideoEncodeFrameInfo>& encodeFrameInfo)
{
if ((m_encoderConfig->enableQpMap == VK_FALSE) || (!m_encoderConfig->qpMapFileHandler.HandleIsValid())) {
return VK_SUCCESS;
}
VkSharedBaseObj<VulkanVideoImagePoolNode>& srcQpMapResource = ((m_qpMapTiling != VK_IMAGE_TILING_LINEAR)) ?
encodeFrameInfo->srcQpMapStagingResource :
encodeFrameInfo->srcQpMapImageResource;
VkSharedBaseObj<VulkanVideoImagePool>& qpMapImagePool = ((m_qpMapTiling != VK_IMAGE_TILING_LINEAR)) ?
m_linearQpMapImagePool : m_qpMapImagePool;
// If srcQpMapStagingImageView is valid at this point, it means that the client had provided
// the QpMap image.
if (srcQpMapResource == nullptr) {
bool success = qpMapImagePool->GetAvailableImage(srcQpMapResource,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
assert(success);
if (!success) {
return VK_ERROR_INITIALIZATION_FAILED;
}
assert(srcQpMapResource != nullptr);
VkSharedBaseObj<VkImageResourceView> linearQpMapImageView;
srcQpMapResource->GetImageView(linearQpMapImageView);
const VkSharedBaseObj<VkImageResource>& dstQpMapImageResource = linearQpMapImageView->GetImageResource();
VkSharedBaseObj<VulkanDeviceMemoryImpl> srcQpMapImageDeviceMemory(dstQpMapImageResource->GetMemory());
// Map the image and read the image data.
VkDeviceSize qpMapImageOffset = dstQpMapImageResource->GetImageDeviceMemoryOffset();
VkDeviceSize qpMapMaxSize = 0;
uint8_t* writeQpMapImagePtr = srcQpMapImageDeviceMemory->GetDataPtr(qpMapImageOffset, qpMapMaxSize);
assert(writeQpMapImagePtr != nullptr);
size_t formatSize = getFormatTexelSize(m_imageQpMapFormat);
uint32_t inputQpMapWidth = (m_encoderConfig->input.width + m_qpMapTexelSize.width - 1) / m_qpMapTexelSize.width;
uint32_t qpMapWidth = (m_encoderConfig->encodeWidth + m_qpMapTexelSize.width - 1) / m_qpMapTexelSize.width;
uint32_t qpMapHeight = (m_encoderConfig->encodeHeight + m_qpMapTexelSize.height - 1) / m_qpMapTexelSize.height;
uint64_t qpMapFileOffset = qpMapWidth * qpMapHeight * encodeFrameInfo->frameInputOrderNum * formatSize;
const uint8_t* pQpMapData = m_encoderConfig->qpMapFileHandler.GetMappedPtr(qpMapFileOffset);
const VkSubresourceLayout* dstQpMapSubresourceLayout = dstQpMapImageResource->GetSubresourceLayout();
for (uint32_t j = 0; j < qpMapHeight; j++) {
memcpy(writeQpMapImagePtr + (dstQpMapSubresourceLayout[0].offset + j * dstQpMapSubresourceLayout[0].rowPitch),
pQpMapData + j * inputQpMapWidth * formatSize, qpMapWidth * formatSize);
}
}
return VK_SUCCESS;
}
// 1. Load current input frame from file
// 2. Convert yuv image to nv12 (TODO: switch to Vulkan compute next, instead of using the CPU for that)
// 3. Copy the nv12 input linear image to the optimal input image
// 4. Load qp map from file
// 5. Copy linear image to the optimal image
VkResult VkVideoEncoder::LoadNextFrame(VkSharedBaseObj<VkVideoEncodeFrameInfo>& encodeFrameInfo)
{
assert(encodeFrameInfo);
encodeFrameInfo->frameInputOrderNum = m_inputFrameNum++;
encodeFrameInfo->lastFrame = !(encodeFrameInfo->frameInputOrderNum < (m_encoderConfig->numFrames - 1));
if ((m_encoderConfig->enableQpMap == VK_TRUE) && m_encoderConfig->qpMapFileHandler.HandleIsValid()) {
VkResult result = LoadNextQpMapFrameFromFile(encodeFrameInfo);
if (result != VK_SUCCESS) {
return result;
}
}
if (encodeFrameInfo->srcStagingImageView == nullptr) {
bool success = m_linearInputImagePool->GetAvailableImage(encodeFrameInfo->srcStagingImageView,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
assert(success);
if (!success) {
return VK_ERROR_INITIALIZATION_FAILED;
}
assert(encodeFrameInfo->srcStagingImageView != nullptr);
}
VkSharedBaseObj<VkImageResourceView> linearInputImageView;
encodeFrameInfo->srcStagingImageView->GetImageView(linearInputImageView);
const VkSharedBaseObj<VkImageResource>& dstImageResource = linearInputImageView->GetImageResource();
VkSharedBaseObj<VulkanDeviceMemoryImpl> srcImageDeviceMemory(dstImageResource->GetMemory());
// Map the image and read the image data.
VkDeviceSize imageOffset = dstImageResource->GetImageDeviceMemoryOffset();
VkDeviceSize maxSize = 0;
uint8_t* writeImagePtr = srcImageDeviceMemory->GetDataPtr(imageOffset, maxSize);
assert(writeImagePtr != nullptr);
const uint8_t* pInputFrameData = m_encoderConfig->inputFileHandler.GetMappedPtr(m_encoderConfig->input.fullImageSize, encodeFrameInfo->frameInputOrderNum);
const VkSubresourceLayout* dstSubresourceLayout = dstImageResource->GetSubresourceLayout();
int yCbCrConvResult = 0;
if (m_encoderConfig->input.bpp == 8) {
if (m_encoderConfig->encodeChromaSubsampling == VK_VIDEO_CHROMA_SUBSAMPLING_444_BIT_KHR) {
// Load current 8-bit frame from file and convert to 2-plane YUV444
yCbCrConvResult = YCbCrConvUtilsCpu<uint8_t>::I444ToP444(
pInputFrameData + m_encoderConfig->input.planeLayouts[0].offset, // src_y
(int)m_encoderConfig->input.planeLayouts[0].rowPitch, // src_stride_y
pInputFrameData + m_encoderConfig->input.planeLayouts[1].offset, // src_u
(int)m_encoderConfig->input.planeLayouts[1].rowPitch, // src_stride_u
pInputFrameData + m_encoderConfig->input.planeLayouts[2].offset, // src_v
(int)m_encoderConfig->input.planeLayouts[2].rowPitch, // src_stride_v
writeImagePtr + dstSubresourceLayout[0].offset, // dst_y
(int)dstSubresourceLayout[0].rowPitch, // dst_stride_y
writeImagePtr + dstSubresourceLayout[1].offset, // dst_uv
(int)dstSubresourceLayout[1].rowPitch, // dst_stride_uv
std::min(m_encoderConfig->encodeWidth, m_encoderConfig->input.width), // width
std::min(m_encoderConfig->encodeHeight, m_encoderConfig->input.height)); // height
} else {
// Load current 8-bit frame from file and convert to NV12
yCbCrConvResult = YCbCrConvUtilsCpu<uint8_t>::I420ToNV12(
pInputFrameData + m_encoderConfig->input.planeLayouts[0].offset, // src_y,
(int)m_encoderConfig->input.planeLayouts[0].rowPitch, // src_stride_y,
pInputFrameData + m_encoderConfig->input.planeLayouts[1].offset, // src_u,
(int)m_encoderConfig->input.planeLayouts[1].rowPitch, // src_stride_u,
pInputFrameData + m_encoderConfig->input.planeLayouts[2].offset, // src_v,
(int)m_encoderConfig->input.planeLayouts[2].rowPitch, // src_stride_v,
writeImagePtr + dstSubresourceLayout[0].offset, // dst_y,
(int)dstSubresourceLayout[0].rowPitch, // dst_stride_y,
writeImagePtr + dstSubresourceLayout[1].offset, // dst_uv,
(int)dstSubresourceLayout[1].rowPitch, // dst_stride_uv,
std::min(m_encoderConfig->encodeWidth, m_encoderConfig->input.width), // width
std::min(m_encoderConfig->encodeHeight, m_encoderConfig->input.height)); // height
}
} else if (m_encoderConfig->input.bpp == 10) { // 10-bit - actually 16-bit only for now.
int shiftBits = 0;
if (m_encoderConfig->input.msbShift >= 0) {
shiftBits = m_encoderConfig->input.msbShift;
} else {
shiftBits = 16 - m_encoderConfig->input.bpp;
}
if (m_encoderConfig->encodeChromaSubsampling == VK_VIDEO_CHROMA_SUBSAMPLING_444_BIT_KHR) {
// Load current 10-bit frame from file and convert to 2-plane YUV444
yCbCrConvResult = YCbCrConvUtilsCpu<uint16_t>::I444ToP444(
(const uint16_t*)(pInputFrameData + m_encoderConfig->input.planeLayouts[0].offset), // src_y
(int)m_encoderConfig->input.planeLayouts[0].rowPitch, // src_stride_y
(const uint16_t*)(pInputFrameData + m_encoderConfig->input.planeLayouts[1].offset), // src_u
(int)m_encoderConfig->input.planeLayouts[1].rowPitch, // src_stride_u
(const uint16_t*)(pInputFrameData + m_encoderConfig->input.planeLayouts[2].offset), // src_v
(int)m_encoderConfig->input.planeLayouts[2].rowPitch, // src_stride_v
(uint16_t*)(writeImagePtr + dstSubresourceLayout[0].offset), // dst_y
(int)dstSubresourceLayout[0].rowPitch, // dst_stride_y
(uint16_t*)(writeImagePtr + dstSubresourceLayout[1].offset), // dst_uv
(int)dstSubresourceLayout[1].rowPitch, // dst_stride_uv
std::min(m_encoderConfig->encodeWidth, m_encoderConfig->input.width), // width
std::min(m_encoderConfig->encodeHeight, m_encoderConfig->input.height), // height
shiftBits);
} else {
// Load current 10-bit frame from file and convert to P010/P016
yCbCrConvResult = YCbCrConvUtilsCpu<uint16_t>::I420ToNV12(
(const uint16_t*)(pInputFrameData + m_encoderConfig->input.planeLayouts[0].offset), // src_y,
(int)m_encoderConfig->input.planeLayouts[0].rowPitch, // src_stride_y,
(const uint16_t*)(pInputFrameData + m_encoderConfig->input.planeLayouts[1].offset), // src_u,
(int)m_encoderConfig->input.planeLayouts[1].rowPitch, // src_stride_u,
(const uint16_t*)(pInputFrameData + m_encoderConfig->input.planeLayouts[2].offset), // src_v,
(int)m_encoderConfig->input.planeLayouts[2].rowPitch, // src_stride_v,
(uint16_t*)(writeImagePtr + dstSubresourceLayout[0].offset), // dst_y,
(int)dstSubresourceLayout[0].rowPitch, // dst_stride_y,
(uint16_t*)(writeImagePtr + dstSubresourceLayout[1].offset), // dst_uv,
(int)dstSubresourceLayout[1].rowPitch, // dst_stride_uv,
std::min(m_encoderConfig->encodeWidth, m_encoderConfig->input.width), // width
std::min(m_encoderConfig->encodeHeight, m_encoderConfig->input.height), // height
shiftBits);
}
} else {
assert(!"Requested bit-depth is not supported!");
}
if (yCbCrConvResult == 0) {
// On success, stage the input frame for the encoder video input
return StageInputFrame(encodeFrameInfo);
}
return VK_ERROR_INITIALIZATION_FAILED;
}
VkResult VkVideoEncoder::StageInputFrameQpMap(VkSharedBaseObj<VkVideoEncodeFrameInfo>& encodeFrameInfo,
VkCommandBuffer cmdBuf)
{
if (m_encoderConfig->enableQpMap == VK_FALSE) {
return VK_SUCCESS;
}
const bool useDedicatedCommandBuf = (cmdBuf == VK_NULL_HANDLE);
if (encodeFrameInfo->srcQpMapImageResource == nullptr) {
bool success = m_qpMapImagePool->GetAvailableImage(encodeFrameInfo->srcQpMapImageResource,
VK_IMAGE_LAYOUT_VIDEO_ENCODE_QUANTIZATION_MAP_KHR);
assert(success);
assert(encodeFrameInfo->srcQpMapImageResource != nullptr);
if (!success || encodeFrameInfo->srcQpMapImageResource == nullptr) {
return VK_ERROR_INITIALIZATION_FAILED;
}
}
if (useDedicatedCommandBuf) {
assert(m_inputCommandBufferPool != nullptr);
m_inputCommandBufferPool->GetAvailablePoolNode(encodeFrameInfo->qpMapCmdBuffer);
assert(encodeFrameInfo->qpMapCmdBuffer != nullptr);
// Make sure command buffer is not in use anymore and reset
encodeFrameInfo->qpMapCmdBuffer->ResetCommandBuffer(true, "encoderStagedInputFence");
// Begin command buffer
VkCommandBufferBeginInfo beginInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, nullptr };
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
cmdBuf = encodeFrameInfo->qpMapCmdBuffer->BeginCommandBufferRecording(beginInfo);
}
assert(cmdBuf != VK_NULL_HANDLE);
VkSharedBaseObj<VkImageResourceView> linearQpMapImageView;
encodeFrameInfo->srcQpMapStagingResource->GetImageView(linearQpMapImageView);
VkSharedBaseObj<VkImageResourceView> srcQpMapImageView;
encodeFrameInfo->srcQpMapImageResource->GetImageView(srcQpMapImageView);
VkImageLayout linearQpMapImgNewLayout = TransitionImageLayout(cmdBuf, linearQpMapImageView, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
VkImageLayout srcQpMapImgNewLayout = TransitionImageLayout(cmdBuf, srcQpMapImageView, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
(void)linearQpMapImgNewLayout;
(void)srcQpMapImgNewLayout;
VkExtent2D copyImageExtent {
(std::min(m_encoderConfig->encodeWidth, m_encoderConfig->input.width) + m_qpMapTexelSize.width - 1) / m_qpMapTexelSize.width,
(std::min(m_encoderConfig->encodeHeight, m_encoderConfig->input.height) + m_qpMapTexelSize.height - 1) / m_qpMapTexelSize.height
};
CopyLinearToLinearImage(cmdBuf, linearQpMapImageView, srcQpMapImageView, copyImageExtent);
if (useDedicatedCommandBuf) {
VkResult result = VK_SUCCESS;
result = encodeFrameInfo->qpMapCmdBuffer->EndCommandBufferRecording(cmdBuf);
if (result != VK_SUCCESS) {
return result;
}
// Now submit the staged input to the queue
return SubmitStagedQpMap(encodeFrameInfo);
}
return VK_SUCCESS;
}
VkResult VkVideoEncoder::EncodeFrameCommon(VkSharedBaseObj<VkVideoEncodeFrameInfo>& encodeFrameInfo)
{
encodeFrameInfo->constQp = m_encoderConfig->constQp;
// and encode the input frame with the encoder next
return EncodeFrame(encodeFrameInfo);
}
VkResult VkVideoEncoder::StageInputFrame(VkSharedBaseObj<VkVideoEncodeFrameInfo>& encodeFrameInfo)
{
assert(encodeFrameInfo);
if (encodeFrameInfo->srcEncodeImageResource == nullptr) {
bool success = m_inputImagePool->GetAvailableImage(encodeFrameInfo->srcEncodeImageResource,
VK_IMAGE_LAYOUT_VIDEO_ENCODE_SRC_KHR);
assert(success);
assert(encodeFrameInfo->srcEncodeImageResource != nullptr);
if (!success || encodeFrameInfo->srcEncodeImageResource == nullptr) {
return VK_ERROR_INITIALIZATION_FAILED;
}
}
m_inputCommandBufferPool->GetAvailablePoolNode(encodeFrameInfo->inputCmdBuffer);
assert(encodeFrameInfo->inputCmdBuffer != nullptr);
// Make sure command buffer is not in use anymore and reset
encodeFrameInfo->inputCmdBuffer->ResetCommandBuffer(true, "encoderStagedInputFence");
// Begin command buffer
VkCommandBufferBeginInfo beginInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, nullptr };
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
VkCommandBuffer cmdBuf = encodeFrameInfo->inputCmdBuffer->BeginCommandBufferRecording(beginInfo);
VkSharedBaseObj<VkImageResourceView> linearInputImageView;
encodeFrameInfo->srcStagingImageView->GetImageView(linearInputImageView);
VkSharedBaseObj<VkImageResourceView> srcEncodeImageView;
encodeFrameInfo->srcEncodeImageResource->GetImageView(srcEncodeImageView);
VkExtent2D copyImageExtent {
std::min(m_encoderConfig->encodeWidth, m_encoderConfig->input.width),
std::min(m_encoderConfig->encodeHeight, m_encoderConfig->input.height)
};
VkResult result;
if (m_inputComputeFilter == nullptr) {
VkImageLayout linearImgNewLayout = TransitionImageLayout(cmdBuf, linearInputImageView, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
VkImageLayout srcImgNewLayout = TransitionImageLayout(cmdBuf, srcEncodeImageView, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
(void)linearImgNewLayout;
(void)srcImgNewLayout;
CopyLinearToOptimalImage(cmdBuf, linearInputImageView, srcEncodeImageView, copyImageExtent);
} else {
VkVideoPictureResourceInfoKHR srcPictureResourceInfo(*encodeFrameInfo->srcStagingImageView->GetPictureResourceInfo());
VkVideoPictureResourceInfoKHR dstPictureResourceInfo(*encodeFrameInfo->srcEncodeImageResource->GetPictureResourceInfo());
srcPictureResourceInfo.codedExtent = copyImageExtent;
if (m_encoderConfig->enablePictureRowColReplication == 1) {
// replicate the last row and column to the padding area
dstPictureResourceInfo.codedExtent.width = m_encoderConfig->encodeAlignedWidth;
dstPictureResourceInfo.codedExtent.height = m_encoderConfig->encodeAlignedHeight;
} else if (m_encoderConfig->enablePictureRowColReplication == 2) {
// replicate only one row and one column to the padding area
if (dstPictureResourceInfo.codedExtent.width < m_encoderConfig->encodeAlignedWidth) {
dstPictureResourceInfo.codedExtent.width += 1;
}
if (dstPictureResourceInfo.codedExtent.height < m_encoderConfig->encodeAlignedHeight) {
dstPictureResourceInfo.codedExtent.height += 1;
}
} else {
// row and column replication is disabled. Don't touch the image padding area.
dstPictureResourceInfo.codedExtent = copyImageExtent;
}
result = m_inputComputeFilter->RecordCommandBuffer(cmdBuf,
linearInputImageView,
&srcPictureResourceInfo,
srcEncodeImageView,
&dstPictureResourceInfo,
encodeFrameInfo->inputCmdBuffer->GetNodePoolIndex());
if (result != VK_SUCCESS) {
return result;
}
}
// Stage QPMap if it needs staging. Reuse the same command buffer used for staging of the input image
if (m_encoderConfig->enableQpMap && (m_qpMapTiling != VK_IMAGE_TILING_LINEAR)) {
result = StageInputFrameQpMap(encodeFrameInfo, cmdBuf);
if (result != VK_SUCCESS) {
return result;
}
}
result = encodeFrameInfo->inputCmdBuffer->EndCommandBufferRecording(cmdBuf);
if (result != VK_SUCCESS) {
return result;
}
// Now submit the staged input to the queue
SubmitStagedInputFrame(encodeFrameInfo);
// and encode the input frame with the encoder next
return EncodeFrameCommon(encodeFrameInfo);
}
VkResult VkVideoEncoder::SubmitStagedQpMap(VkSharedBaseObj<VkVideoEncodeFrameInfo>& encodeFrameInfo)
{
assert(encodeFrameInfo);
assert(encodeFrameInfo->qpMapCmdBuffer != nullptr);
const VkCommandBuffer* pCmdBuf = encodeFrameInfo->qpMapCmdBuffer->GetCommandBuffer();
VkSemaphore frameCompleteSemaphore = encodeFrameInfo->qpMapCmdBuffer->GetSemaphore();
VkSubmitInfo submitInfo = { VK_STRUCTURE_TYPE_SUBMIT_INFO, nullptr };
const VkPipelineStageFlags videoTransferSubmitWaitStages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = nullptr;
submitInfo.pWaitDstStageMask = &videoTransferSubmitWaitStages;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = pCmdBuf;
submitInfo.pSignalSemaphores = (frameCompleteSemaphore != VK_NULL_HANDLE) ? &frameCompleteSemaphore : nullptr;
submitInfo.signalSemaphoreCount = (frameCompleteSemaphore != VK_NULL_HANDLE) ? 1 : 0;
VkFence queueCompleteFence = encodeFrameInfo->qpMapCmdBuffer->GetFence();
assert(VK_NOT_READY == m_vkDevCtx->GetFenceStatus(*m_vkDevCtx, queueCompleteFence));
VkResult result = m_vkDevCtx->MultiThreadedQueueSubmit(((m_vkDevCtx->GetVideoEncodeQueueFlag() & VK_QUEUE_TRANSFER_BIT) != 0) ?
VulkanDeviceContext::ENCODE : VulkanDeviceContext::TRANSFER,
0, 1, &submitInfo,
queueCompleteFence);
encodeFrameInfo->qpMapCmdBuffer->SetCommandBufferSubmitted();
bool syncCpuAfterStaging = false;
if (syncCpuAfterStaging) {
encodeFrameInfo->qpMapCmdBuffer->SyncHostOnCmdBuffComplete(false, "encoderStagedInputFence");
}
return result;
}
VkResult VkVideoEncoder::SubmitStagedInputFrame(VkSharedBaseObj<VkVideoEncodeFrameInfo>& encodeFrameInfo)
{
assert(encodeFrameInfo);
assert(encodeFrameInfo->inputCmdBuffer != nullptr);
const VkCommandBuffer* pCmdBuf = encodeFrameInfo->inputCmdBuffer->GetCommandBuffer();
VkSemaphore frameCompleteSemaphore = encodeFrameInfo->inputCmdBuffer->GetSemaphore();
VkSubmitInfo submitInfo = { VK_STRUCTURE_TYPE_SUBMIT_INFO, nullptr };
const VkPipelineStageFlags videoTransferSubmitWaitStages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = nullptr;
submitInfo.pWaitDstStageMask = &videoTransferSubmitWaitStages;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = pCmdBuf;
submitInfo.pSignalSemaphores = (frameCompleteSemaphore != VK_NULL_HANDLE) ? &frameCompleteSemaphore : nullptr;
submitInfo.signalSemaphoreCount = (frameCompleteSemaphore != VK_NULL_HANDLE) ? 1 : 0;
VkFence queueCompleteFence = encodeFrameInfo->inputCmdBuffer->GetFence();
assert(VK_NOT_READY == m_vkDevCtx->GetFenceStatus(*m_vkDevCtx, queueCompleteFence));
const VulkanDeviceContext::QueueFamilySubmitType submitType =
(m_inputComputeFilter != nullptr) ? VulkanDeviceContext::COMPUTE :
(((m_vkDevCtx->GetVideoEncodeQueueFlag() & VK_QUEUE_TRANSFER_BIT) != 0) ?
VulkanDeviceContext::ENCODE : VulkanDeviceContext::TRANSFER);
VkResult result = m_vkDevCtx->MultiThreadedQueueSubmit(submitType,
0, 1, &submitInfo,
queueCompleteFence);
encodeFrameInfo->inputCmdBuffer->SetCommandBufferSubmitted();
bool syncCpuAfterStaging = false;
if (syncCpuAfterStaging) {
encodeFrameInfo->inputCmdBuffer->SyncHostOnCmdBuffComplete(false, "encoderStagedInputFence");
}
#ifdef VIDEO_DISPLAY_QUEUE_SUPPORT
if (result == VK_SUCCESS) {
if (m_displayQueue.IsValid()) {
// Optionally, submit the input frame for preview by the display, if enabled.
VulkanEncoderInputFrame displayEncoderInputFrame;
displayEncoderInputFrame.pictureIndex = (int32_t)encodeFrameInfo->frameInputOrderNum;
displayEncoderInputFrame.displayOrder = encodeFrameInfo->gopPosition.inputOrder;
displayEncoderInputFrame.frameCompleteSemaphore = frameCompleteSemaphore;
// displayEncoderInputFrame.frameCompleteFence = currentEncodeFrameData->m_frameCompleteFence;
encodeFrameInfo->srcEncodeImageResource->GetImageView(
displayEncoderInputFrame.imageViews[VulkanEncoderInputFrame::IMAGE_VIEW_TYPE_OPTIMAL_DISPLAY].singleLevelView );
displayEncoderInputFrame.imageViews[VulkanEncoderInputFrame::IMAGE_VIEW_TYPE_OPTIMAL_DISPLAY].inUse = true;
// One can also look at the linear input instead
// displayEncoderInputFrame.imageView = currentEncodeFrameData->m_linearInputImage;
displayEncoderInputFrame.displayWidth = m_encoderConfig->encodeWidth;
displayEncoderInputFrame.displayHeight = m_encoderConfig->encodeHeight;
m_displayQueue.EnqueueFrame(&displayEncoderInputFrame);
}
}
#endif // VIDEO_DISPLAY_QUEUE_SUPPORT
return result;
}
VkResult VkVideoEncoder::AssembleBitstreamData(VkSharedBaseObj<VkVideoEncodeFrameInfo>& encodeFrameInfo,
uint32_t frameIdx, uint32_t ofTotalFrames)
{
if (m_encoderConfig->verboseFrameStruct) {
DumpStateInfo("assemble bitstream", 6, encodeFrameInfo, frameIdx, ofTotalFrames);
}
assert(encodeFrameInfo->outputBitstreamBuffer != nullptr);
assert(encodeFrameInfo->encodeCmdBuffer != nullptr);
if(encodeFrameInfo->bitstreamHeaderBufferSize > 0) {
size_t nonVcl = fwrite(encodeFrameInfo->bitstreamHeaderBuffer + encodeFrameInfo->bitstreamHeaderOffset,
1, encodeFrameInfo->bitstreamHeaderBufferSize,
m_encoderConfig->outputFileHandler.GetFileHandle());
if (m_encoderConfig->verboseFrameStruct) {
std::cout << " == Non-Vcl data " << (nonVcl ? "SUCCESS" : "FAIL")
<< " File Output non-VCL data with size: " << encodeFrameInfo->bitstreamHeaderBufferSize
<< ", Input Order: " << encodeFrameInfo->gopPosition.inputOrder
<< ", Encode Order: " << encodeFrameInfo->gopPosition.encodeOrder
<< std::endl << std::flush;
}
}
VkResult result = encodeFrameInfo->encodeCmdBuffer->SyncHostOnCmdBuffComplete(false, "encoderEncodeFence");
if(result != VK_SUCCESS) {
fprintf(stderr, "\nWait on encoder complete fence has failed with result 0x%x.\n", result);
return result;
}
uint32_t querySlotId = (uint32_t)-1;
VkQueryPool queryPool = encodeFrameInfo->encodeCmdBuffer->GetQueryPool(querySlotId);
// Since we can use a single command buffer from multiple frames,
// we can't just use the querySlotId from the command buffer.
// Instead we use the input image index that should be unique for each frame.
querySlotId = (uint32_t)encodeFrameInfo->srcEncodeImageResource->GetImageIndex();
// get output results
struct VulkanVideoEncodeStatus {
uint32_t bitstreamStartOffset;
uint32_t bitstreamSize;
VkQueryResultStatusKHR status;
} encodeResult{};
// Fetch the coded VCL data and its information
result = m_vkDevCtx->GetQueryPoolResults(*m_vkDevCtx, queryPool, querySlotId,
1, sizeof(encodeResult), &encodeResult, sizeof(encodeResult),
VK_QUERY_RESULT_WITH_STATUS_BIT_KHR | VK_QUERY_RESULT_WAIT_BIT);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nRetrieveData Error: Failed to get vcl query pool results.\n");
assert(result == VK_SUCCESS);
return result;
}
if (encodeResult.status != VK_QUERY_RESULT_STATUS_COMPLETE_KHR) {
fprintf(stderr, "\nencodeResult.status is (0x%x) NOT STATUS_COMPLETE! bitstreamStartOffset %u, bitstreamSize %u\n",
encodeResult.status, encodeResult.bitstreamStartOffset, encodeResult.bitstreamSize);
assert(encodeResult.status == VK_QUERY_RESULT_STATUS_COMPLETE_KHR);
return VK_INCOMPLETE;
}
VkDeviceSize maxSize;
uint8_t* data = encodeFrameInfo->outputBitstreamBuffer->GetDataPtr(0, maxSize);
size_t vcl = fwrite(data + encodeResult.bitstreamStartOffset, 1, encodeResult.bitstreamSize,
m_encoderConfig->outputFileHandler.GetFileHandle());
if (m_encoderConfig->verboseFrameStruct) {
std::cout << " == Output VCL data " << (vcl ? "SUCCESS" : "FAIL") << " with size: " << encodeResult.bitstreamSize
<< " and offset: " << encodeResult.bitstreamStartOffset
<< ", Input Order: " << encodeFrameInfo->gopPosition.inputOrder
<< ", Encode Order: " << encodeFrameInfo->gopPosition.encodeOrder << std::endl << std::flush;
}
return result;
}
VkResult VkVideoEncoder::InitEncoder(VkSharedBaseObj<EncoderConfig>& encoderConfig)
{
if (!VulkanVideoCapabilities::IsCodecTypeSupported(m_vkDevCtx,
m_vkDevCtx->GetVideoEncodeQueueFamilyIdx(),
encoderConfig->codec)) {
std::cout << "*** The video codec " << VkVideoCoreProfile::CodecToName(encoderConfig->codec) << " is not supported! ***" << std::endl;
assert(!"The video codec is not supported");
return VK_ERROR_INITIALIZATION_FAILED;
}
m_encoderConfig = encoderConfig;
// Update the video profile
encoderConfig->InitVideoProfile();
encoderConfig->InitDeviceCapabilities(m_vkDevCtx);
if (encoderConfig->useDpbArray == false &&
(encoderConfig->videoCapabilities.flags & VK_VIDEO_CAPABILITY_SEPARATE_REFERENCE_IMAGES_BIT_KHR) == 0) {
std::cout << "Separate DPB was requested, but the implementation does not support it!" << std::endl;
std::cout << "Fallback to layered DPB!" << std::endl;
encoderConfig->useDpbArray = true;
}
if (m_encoderConfig->enableQpMap) {
if ((m_encoderConfig->qpMapMode == EncoderConfig::DELTA_QP_MAP) &&
((m_encoderConfig->videoEncodeCapabilities.flags & VK_VIDEO_ENCODE_CAPABILITY_QUANTIZATION_DELTA_MAP_BIT_KHR) == 0)) {
std::cout << "Delta QP Map was requested, but the implementation does not support it!" << std::endl;
assert(!"Delta QP Map is not supported");
return VK_ERROR_INITIALIZATION_FAILED;
}
if ((m_encoderConfig->qpMapMode == EncoderConfig::EMPHASIS_MAP) &&
((m_encoderConfig->videoEncodeCapabilities.flags & VK_VIDEO_ENCODE_CAPABILITY_EMPHASIS_MAP_BIT_KHR) == 0)) {
std::cout << "Emphasis Map was requested, but the implementation does not support it!" << std::endl;
assert(!"Emphasis QP Map is not supported");
return VK_ERROR_INITIALIZATION_FAILED;
}
}
// Reconfigure the gopStructure structure because the device may not support
// specific GOP structure. For example it may not support B-frames.
// gopStructure.Init() should be called after encoderConfig->InitDeviceCapabilities().
m_encoderConfig->gopStructure.Init(m_encoderConfig->numFrames);
if (encoderConfig->GetMaxBFrameCount() < m_encoderConfig->gopStructure.GetConsecutiveBFrameCount()) {
if (m_encoderConfig->verbose) {
std::cout << "Max consecutive B frames: " << (uint32_t)encoderConfig->GetMaxBFrameCount() << " lower than the configured one: " << (uint32_t)m_encoderConfig->gopStructure.GetConsecutiveBFrameCount() << std::endl;
std::cout << "Fallback to the max value: " << (uint32_t)m_encoderConfig->gopStructure.GetConsecutiveBFrameCount() << std::endl;
}
m_encoderConfig->gopStructure.SetConsecutiveBFrameCount(encoderConfig->GetMaxBFrameCount());
}
if (m_encoderConfig->verbose) {
std::cout << std::endl << "GOP frame count: " << (uint32_t)m_encoderConfig->gopStructure.GetGopFrameCount();
std::cout << ", IDR period: " << (uint32_t)m_encoderConfig->gopStructure.GetIdrPeriod();
std::cout << ", Consecutive B frames: " << (uint32_t)m_encoderConfig->gopStructure.GetConsecutiveBFrameCount();
std::cout << std::endl;
const uint64_t maxFramesToDump = std::min<uint32_t>(m_encoderConfig->numFrames, m_encoderConfig->gopStructure.GetGopFrameCount() + 19);
m_encoderConfig->gopStructure.PrintGopStructure(maxFramesToDump);
if (m_encoderConfig->verboseFrameStruct) {
m_encoderConfig->gopStructure.DumpFramesGopStructure(0, maxFramesToDump);
}
}
if (m_encoderConfig->enableOutOfOrderRecording) {
// Testing only - don't use for production!
if (m_encoderConfig->gopStructure.GetConsecutiveBFrameCount() == 0) {
// Queue at least 4 IDR, I, P frames to be able to test the out-of-order
// recording sequence.
m_holdRefFramesInQueue = 4;
} else {
// Queue atleast 2 reference frames along with non-ref frames
m_holdRefFramesInQueue = 2;
}
if (m_holdRefFramesInQueue > 4) {
// We don't want to make the queue too deep. This would require a lot of reference images
m_holdRefFramesInQueue = 4;
}
}
// The required num of DPB images
m_maxDpbPicturesCount = encoderConfig->InitDpbCount();
encoderConfig->InitRateControl();
VkFormat supportedDpbFormats[8];
VkFormat supportedInFormats[8];
uint32_t formatCount = sizeof(supportedDpbFormats) / sizeof(supportedDpbFormats[0]);
VkResult result = VulkanVideoCapabilities::GetVideoFormats(m_vkDevCtx, encoderConfig->videoCoreProfile,
VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR,
formatCount, supportedDpbFormats);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to get desired video format for the decoded picture buffer.\n");
return result;
}
result = VulkanVideoCapabilities::GetVideoFormats(m_vkDevCtx, encoderConfig->videoCoreProfile,
VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR,
formatCount, supportedInFormats);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to get desired video format for input images.\n");
return result;
}
m_imageDpbFormat = supportedDpbFormats[0];
m_imageInFormat = supportedInFormats[0];
if (encoderConfig->enableQpMap) {
VkFormat supportedQpMapFormats[8];
VkExtent2D supportedQpMapTexelSize[8];
VkImageTiling supportedQpMapTiling[8];
VkImageUsageFlagBits imageUsageFlag = (encoderConfig->qpMapMode == EncoderConfig::DELTA_QP_MAP) ? VK_IMAGE_USAGE_VIDEO_ENCODE_QUANTIZATION_DELTA_MAP_BIT_KHR
: VK_IMAGE_USAGE_VIDEO_ENCODE_EMPHASIS_MAP_BIT_KHR;
result = VulkanVideoCapabilities::GetVideoFormats(m_vkDevCtx, encoderConfig->videoCoreProfile,
imageUsageFlag,
formatCount, supportedQpMapFormats, supportedQpMapTiling,
true, supportedQpMapTexelSize);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to get desired video format for qpMap images.\n");
return result;
}
m_imageQpMapFormat = supportedQpMapFormats[0];
m_qpMapTexelSize = supportedQpMapTexelSize[0];
m_qpMapTiling = supportedQpMapTiling[0];
}
encoderConfig->encodeWidth = std::max(encoderConfig->encodeWidth, encoderConfig->videoCapabilities.minCodedExtent.width);
encoderConfig->encodeHeight = std::max(encoderConfig->encodeHeight, encoderConfig->videoCapabilities.minCodedExtent.height);
encoderConfig->encodeWidth = std::min(encoderConfig->encodeWidth, encoderConfig->videoCapabilities.maxCodedExtent.width);
encoderConfig->encodeHeight = std::min(encoderConfig->encodeHeight, encoderConfig->videoCapabilities.maxCodedExtent.height);
m_maxCodedExtent = { encoderConfig->encodeMaxWidth, encoderConfig->encodeMaxHeight }; // max coded size
encoderConfig->encodeAlignedWidth = vk::alignedSize (encoderConfig->encodeWidth, encoderConfig->videoCapabilities.pictureAccessGranularity.width);
encoderConfig->encodeAlignedHeight = vk::alignedSize (encoderConfig->encodeHeight, encoderConfig->videoCapabilities.pictureAccessGranularity.height);
const uint32_t maxActiveReferencePicturesCount = encoderConfig->videoCapabilities.maxActiveReferencePictures;
const uint32_t maxDpbPicturesCount = std::min<uint32_t>(m_maxDpbPicturesCount, encoderConfig->videoCapabilities.maxDpbSlots);
VkVideoSessionCreateFlagsKHR sessionCreateFlags{};
#ifdef VK_KHR_video_maintenance1
m_videoMaintenance1FeaturesSupported = VulkanVideoCapabilities::GetVideoMaintenance1FeatureSupported(m_vkDevCtx);
if (m_videoMaintenance1FeaturesSupported) {
sessionCreateFlags |= VK_VIDEO_SESSION_CREATE_INLINE_QUERIES_BIT_KHR;
}
#endif // VK_KHR_video_maintenance1
if (m_encoderConfig->enableQpMap) {
if (m_encoderConfig->qpMapMode == EncoderConfig::DELTA_QP_MAP) {
sessionCreateFlags |= VK_VIDEO_SESSION_CREATE_ALLOW_ENCODE_QUANTIZATION_DELTA_MAP_BIT_KHR;
} else {
sessionCreateFlags |= VK_VIDEO_SESSION_CREATE_ALLOW_ENCODE_EMPHASIS_MAP_BIT_KHR;
}
}
if (!m_videoSession ||
!m_videoSession->IsCompatible( m_vkDevCtx,
sessionCreateFlags,
m_vkDevCtx->GetVideoEncodeQueueFamilyIdx(),
&encoderConfig->videoCoreProfile,
m_imageInFormat,
m_maxCodedExtent,
m_imageDpbFormat,
maxDpbPicturesCount,
maxActiveReferencePicturesCount) ) {
result = VulkanVideoSession::Create( m_vkDevCtx,
sessionCreateFlags,
m_vkDevCtx->GetVideoEncodeQueueFamilyIdx(),
&encoderConfig->videoCoreProfile,
m_imageInFormat,
m_maxCodedExtent,
m_imageDpbFormat,
maxDpbPicturesCount,
maxActiveReferencePicturesCount,
m_videoSession);
// after creating a new video session, we need a codec reset.
m_resetEncoder = true;
assert(result == VK_SUCCESS);
}
const VkImageUsageFlags inImageUsage = ( VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR |
VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT);
const VkImageUsageFlags dpbImageUsage = VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR;
result = VulkanVideoImagePool::Create(m_vkDevCtx, m_linearInputImagePool);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to create linearInputImagePool.\n");
return result;
}
VkExtent2D linearInputImageExtent {
std::max(m_maxCodedExtent.width, encoderConfig->input.width),
std::max(m_maxCodedExtent.height, encoderConfig->input.height)
};
result = m_linearInputImagePool->Configure( m_vkDevCtx,
encoderConfig->numInputImages,
m_imageInFormat,
linearInputImageExtent,
( VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_STORAGE_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT),
m_vkDevCtx->GetVideoEncodeQueueFamilyIdx(),
( VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT),
nullptr, // pVideoProfile
false, // useImageArray
false, // useImageViewArray
true // useLinear
);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to Configure linearInputImagePool.\n");
return result;
}
result = VulkanVideoImagePool::Create(m_vkDevCtx, m_inputImagePool);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to create inputImagePool.\n");
return result;
}
VkExtent2D imageExtent {
std::max(m_maxCodedExtent.width, encoderConfig->videoCapabilities.minCodedExtent.width),
std::max(m_maxCodedExtent.height, encoderConfig->videoCapabilities.minCodedExtent.height)
};
result = m_inputImagePool->Configure( m_vkDevCtx,
encoderConfig->numInputImages,
m_imageInFormat,
imageExtent,
inImageUsage,
m_vkDevCtx->GetVideoEncodeQueueFamilyIdx(),
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
encoderConfig->videoCoreProfile.GetProfile(), // pVideoProfile
false, // useImageArray
false, // useImageViewArray
false // useLinear
);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to Configure inputImagePool.\n");
return result;
}
if (encoderConfig->enableQpMap) {
if (m_qpMapTiling != VK_IMAGE_TILING_LINEAR) {
// If the linear tiling is not supported, we need to stage the image
result = VulkanVideoImagePool::Create(m_vkDevCtx, m_linearQpMapImagePool);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to create linearQpMapImagePool.\n");
return result;
}
VkExtent2D linearQpMapImageExtent {
(std::max(m_maxCodedExtent.width, encoderConfig->input.width) + m_qpMapTexelSize.width - 1) / m_qpMapTexelSize.width,
(std::max(m_maxCodedExtent.height, encoderConfig->input.height) + m_qpMapTexelSize.height - 1) / m_qpMapTexelSize.height
};
result = m_linearQpMapImagePool->Configure( m_vkDevCtx,
encoderConfig->numInputImages,
m_imageQpMapFormat,
linearQpMapImageExtent,
VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
m_vkDevCtx->GetVideoEncodeQueueFamilyIdx(),
( VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT),
nullptr, // pVideoProfile
false, // useImageArray
false, // useImageViewArray
true // useLinear
);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to Configure linearQpMapImagePool.\n");
return result;
}
}
result = VulkanVideoImagePool::Create(m_vkDevCtx, m_qpMapImagePool);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to create inputImagePool.\n");
return result;
}
VkExtent2D qpMapExtent {
(std::max(m_maxCodedExtent.width, encoderConfig->videoCapabilities.minCodedExtent.width) + m_qpMapTexelSize.width - 1) / m_qpMapTexelSize.width,
(std::max(m_maxCodedExtent.height, encoderConfig->videoCapabilities.minCodedExtent.height) + m_qpMapTexelSize.height - 1) / m_qpMapTexelSize.height
};
const VkImageUsageFlags qpMapImageUsage = (((encoderConfig->qpMapMode == EncoderConfig::DELTA_QP_MAP) ?
VK_IMAGE_USAGE_VIDEO_ENCODE_QUANTIZATION_DELTA_MAP_BIT_KHR :
VK_IMAGE_USAGE_VIDEO_ENCODE_EMPHASIS_MAP_BIT_KHR) |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT);
result = m_qpMapImagePool->Configure( m_vkDevCtx,
encoderConfig->numInputImages,
m_imageQpMapFormat,
qpMapExtent,
qpMapImageUsage,
m_vkDevCtx->GetVideoEncodeQueueFamilyIdx(),
(m_qpMapTiling != VK_IMAGE_TILING_LINEAR) ?
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT :
( VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT),
encoderConfig->videoCoreProfile.GetProfile(), // pVideoProfile
false, // useImageArray
false, // useImageViewArray
m_qpMapTiling == VK_IMAGE_TILING_LINEAR // useLinear
);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to Configure qpMapImagePool.\n");
return result;
}
}
result = VulkanVideoImagePool::Create(m_vkDevCtx, m_dpbImagePool);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to create dpbImagePool.\n");
return result;
}
uint32_t numEncodeImagesInFlight = std::max<uint32_t>(m_holdRefFramesInQueue + m_holdRefFramesInQueue * m_encoderConfig->gopStructure.GetConsecutiveBFrameCount(), 4);
result = m_dpbImagePool->Configure(m_vkDevCtx,
std::max<uint32_t>(maxDpbPicturesCount, maxActiveReferencePicturesCount) + numEncodeImagesInFlight,
m_imageDpbFormat,
imageExtent,
dpbImageUsage,
m_vkDevCtx->GetVideoEncodeQueueFamilyIdx(),
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
encoderConfig->videoCoreProfile.GetProfile(), // pVideoProfile
encoderConfig->useDpbArray, // useImageArray
false, // useImageViewArrays
false // useLinear
);
if(result != VK_SUCCESS) {
fprintf(stderr, "\nInitEncoder Error: Failed to Configure inputImagePool.\n");
return result;
}
int32_t availableBuffers = (int32_t)m_bitstreamBuffersQueue.GetAvailableNodesNumber();
if (availableBuffers < encoderConfig->numBitstreamBuffersToPreallocate) {
uint32_t allocateNumBuffers = std::min<uint32_t>(
m_bitstreamBuffersQueue.GetMaxNodes(),
(encoderConfig->numBitstreamBuffersToPreallocate - availableBuffers));
allocateNumBuffers = std::min<uint32_t>(allocateNumBuffers,
m_bitstreamBuffersQueue.GetFreeNodesNumber());
for (uint32_t i = 0; i < allocateNumBuffers; i++) {
VkSharedBaseObj<VulkanBitstreamBufferImpl> bitstreamBuffer;
VkDeviceSize allocSize = std::max<VkDeviceSize>(m_streamBufferSize, m_minStreamBufferSize);
result = VulkanBitstreamBufferImpl::Create(m_vkDevCtx,
m_vkDevCtx->GetVideoEncodeQueueFamilyIdx(),
VK_BUFFER_USAGE_VIDEO_ENCODE_DST_BIT_KHR,
allocSize,
encoderConfig->videoCapabilities.minBitstreamBufferOffsetAlignment,
encoderConfig->videoCapabilities.minBitstreamBufferSizeAlignment,
nullptr, 0, bitstreamBuffer);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
fprintf(stderr, "\nERROR: VulkanBitstreamBufferImpl::Create() result: 0x%x\n", result);
break;
}
int32_t nodeAddedWithIndex = m_bitstreamBuffersQueue.AddNodeToPool(bitstreamBuffer, false);
if (nodeAddedWithIndex < 0) {
assert("Could not add the new node to the pool");
break;
}
}