-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualizations.py
61 lines (53 loc) · 3.4 KB
/
visualizations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import matplotlib.pyplot as plt
import streamlit as st
import numpy as np
def waiting_statement():
st.write("Running backtest, please wait...")
def final_balance_plotting(starting_amount, total_roi, data, start_idx, end_idx):
final_balance = starting_amount * (1 + total_roi)
st.write(f"Final balance starting with \${starting_amount} and buying/selling 1 MWh of electricity: \${final_balance:.2f}")
st.write(f"Total ROI: {total_roi*100:.2f}%")
st.write("Price Plot with Position Indicator (Zoomed In):")
dates = data.loc[start_idx:end_idx, 'Trade Date'].values
prices = data.loc[start_idx:end_idx, 'Electricity: Wtd Avg Price $/MWh'].values
positions = data.loc[start_idx:end_idx, 'Position'].values
plt.figure(figsize=(15, 7))
for i in range(1, len(dates)):
if positions[i] == 1:
plt.plot([dates[i-1], dates[i]], [prices[i-1], prices[i]], color='green')
elif positions[i] == -1:
plt.plot([dates[i-1], dates[i]], [prices[i-1], prices[i]], color='red')
plt.title('Price Plot with Position Indicator (Zoomed In)')
plt.xlabel('Date')
plt.ylabel('Price')
st.pyplot(plt)
def display_inputs(model_name):
models_input_requirements = {
"price_ARIMA_model.pkl": {"type": "price", "num_inputs": 1, "date_needed": True},
"price_gru_model.h5": {"type": "price", "num_inputs": 1},
"price_lstm_model.h5": {"type": "price", "num_inputs": 1},
"sign_gru_model.keras": {"type": "direction", "num_inputs": 14},
"sign_LSTM_model.keras": {"type": "direction", "num_inputs": 14},
"price_randomForest_model.pkl": {"type": "direction", "num_inputs": 18, "features": ['Day', 'Month', 'Year', 'Electricity: Wtd Avg Price $/MWh', 'Electricity: Daily Volume MWh', 'Natural Gas: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)', 'pjm_load sum in MW (daily)', 'temperature mean in C (daily): US', 'Weekday_Monday', 'Weekday_Sunday', 'Weekday_Thursday', 'Weekday_Tuesday', 'Weekday_Wednesday', 'return', 'Electricity: Daily Volume MWh % Change', 'Natural Gas: Henry Hub Natural Gas Spot Price % Change', 'pjm_load sum in MW % Change', 'temperature mean in C % Change']},
"sign_randomForest_model.pkl": {"type": "direction", "num_inputs": 14, "features": ['Day', 'Month', 'Year', 'Electricity: Wtd Avg Price $/MWh',
'Electricity: Daily Volume MWh',
'Natural Gas: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)',
'pjm_load sum in MW (daily)', 'temperature mean in C (daily): US',
'Weekday', 'return', 'Electricity: Daily Volume MWh % Change',
'Natural Gas: Henry Hub Natural Gas Spot Price % Change',
'pjm_load sum in MW % Change', 'temperature mean in C % Change']},
"sign_linearRegression_model.pkl": {"type": "direction", "num_inputs": 1, "features": ["Today's Return"]}
}
requirements = models_input_requirements.get(model_name, {})
num_inputs = requirements.get("num_inputs", 0)
features = requirements.get("features", [])
inputs = []
if features:
for feature in features:
value = st.number_input(f"Enter {feature}", value=0.0)
inputs.append(value)
else:
for i in range(num_inputs):
value = st.number_input(f"Day {i + 1} data", value=0.0)
inputs.append(value)
return np.array(inputs).reshape(1, -1) if len(inputs) > 0 else None