-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
82 lines (67 loc) · 1.63 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# if this file runs, imports etc. are probably working right
import math
import numpy as np
import torch as t
import torch.utils.data as tdata
import matplotlib.pyplot as plt
from einops import rearrange
import wandb
import tqdm
from dots.training import *
from dots.models import MLP
from dots.dots import *
import torchvision
import torchvision.transforms as transforms
from dots.models import BasicCNN
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
mnist = torchvision.datasets.MNIST(
root='./data',
train=True,
download=True,
transform=transform
)
train_mnist, test_mnist, valid_mnist = tdata.random_split(
mnist,
lengths=[0.8, 0.1, 0.1]
)
mnist_train_loader = tdata.DataLoader(
train_mnist,
batch_size=16,
shuffle=True,
num_workers=1
)
mnist_test_loader = tdata.DataLoader(
test_mnist,
batch_size=16,
shuffle=True,
num_workers=1
)
mnist_valid_loader = tdata.DataLoader(
test_mnist,
batch_size=16,
shuffle=True,
num_workers=1
)
cnn = BasicCNN()
n_eps = 1
trainstate_m = TrainState(
model=cnn,
optimiser=t.optim.Adam(cnn.parameters(), lr=1e-3),
loss_fn=t.nn.CrossEntropyLoss(),
train_dataloader=mnist_valid_loader,
test_dataloader=mnist_test_loader,
hooks=[]
)
trainstate_m.train
def mnist_accuracy(model, dl=mnist_test_loader):
n = 0
correct = 0
for batch, label in mnist_test_loader:
out = model(batch).argmax(dim=-1)
correct += (out==label).sum()
n += batch.shape[0]
return correct / n
print(mnist_accuracy(cnn))
t.save(trainstate_m.model, "test_model_file")