-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualize_results.py
490 lines (411 loc) · 17.8 KB
/
visualize_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# Import libraries
import os
import json
import torch
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
# Import local modules
from helper_functions import plot_images, plot_roc_curve, get_savename
from data.bdello import BdelloDataset
from data.retinas import RetinaDataset
from data.neurons import NeuronsDataset
from data.letters import LettersDataset
from models.conv import ConvolutionalNet
from models.unet import UNet
from models.resnet import ResNet
from models.vit import VisionTransformer
from models.vim import VisionMamba
# Set environment
root = 'cluster/outfiles/'
figpath = 'figures/'
# Set random seed for torch and numpy
seed = 1993
torch.manual_seed(seed)
np.random.seed(seed)
# Plot training stats
def plot_training_stats(basenames_dict, ffcvIDs=None, model_labels=None):
"""Plot the losses and roc curves in a single figure."""
# Set up ffcvIDs
if ffcvIDs is None:
ffcvIDs = [i for i in range(5)]
# If basenames_dict is list, convert to dict
if isinstance(basenames_dict, list):
basenames_dict = {None: basenames_dict}
n_rows = len(basenames_dict.keys())
# Set up model_labels
if model_labels is None:
model_labels = {basename: basename for basename in basenames_dict.values()}
# Set up figure
fig, ax = plt.subplots(n_rows, 3, squeeze=False)
fig.set_size_inches(15, 4*n_rows)
plt.ion()
plt.show()
# Loop over keys
for keyid, (key, basenames_i) in enumerate(basenames_dict.items()):
# Make list of colors the same length as model_options
colors = plt.cm.viridis(np.linspace(0, 1, len(basenames_i)))
# Loop over models and options
for i, basename in enumerate(basenames_i):
# Get avg stats
n_avg = 0
auc_avg = 0
acc_avg = 0
sens_avg = 0
spec_avg = 0
loss_train_avg = 0
loss_val_avg = 0
train_time_avg = 0
fpr_base = np.linspace(0, 1, 500)
tpr_avg = np.zeros(500)
for ffcvid in ffcvIDs:
savename = basename + f'_ffcv={ffcvid}'
try:
with open(os.path.join(root, f'{savename}.json'), 'r') as f:
statistics = json.load(f)
except:
print(f'Could not load {savename}.json')
continue
n_avg += 1
auc_avg += statistics['test_metrics']['auc_score']
acc_avg += statistics['test_metrics']['accuracy']
sens_avg += statistics['test_metrics']['sensitivity']
spec_avg += statistics['test_metrics']['specificity']
loss_train_avg += np.array(statistics['train_losses'])
loss_val_avg += np.array(statistics['val_losses'])
train_time_avg += sum(statistics['epoch_times'])
tpr_avg += np.interp(
fpr_base,
statistics['test_metrics']['roc_fpr'],
statistics['test_metrics']['roc_tpr']
)
n_parameters = statistics['n_parameters']
auc_avg /= n_avg
acc_avg /= n_avg
sens_avg /= n_avg
spec_avg /= n_avg
loss_train_avg /= n_avg
loss_val_avg /= n_avg
train_time_avg /= n_avg
tpr_avg /= n_avg
tpr_avg[0] = 0
# Make label
label = (
f'{model_labels[basename]} ({n_parameters} parameters)\n'
+ '\n'.join([
f'Train Time={int(train_time_avg/60)} mins',
f'AUC={auc_avg:.3f}; SENS={sens_avg:.3f}',
f'ACC={acc_avg:.3f}; SPEC={spec_avg:.4f}'
])
)
# Plot curves
ax[keyid, 0].semilogy(loss_train_avg, color=colors[i])
ax[keyid, 1].semilogy(loss_val_avg, color=colors[i])
ax[keyid, 2].plot(fpr_base, tpr_avg, label=label, color=colors[i])
# Get prefix
prefix = '' if key is None else f'{key.upper()}\n'
# Finalize loss plots
if keyid == 0:
ax[keyid, 0].set_title('Training Loss')
ax[keyid, 1].set_title('Validation Loss')
ax[keyid, 2].set_title('ROC Curve')
ax[keyid, 0].set_xlabel('Epoch')
ax[keyid, 1].set_xlabel('Epoch')
ax[keyid, 2].set_xlabel('False Positive Rate')
ax[keyid, 0].set_ylabel(prefix+'Log Loss')
ax[keyid, 1].set_ylabel('Log Loss')
ax[keyid, 2].set_ylabel('True Positive Rate')
ax[keyid, 2].plot([0, 1], [0, 1], 'k--', label='Random')
ax[keyid, -1].legend(loc='center left', bbox_to_anchor=(1, 0.5))
# Finalize figure
plt.tight_layout()
plt.pause(1)
# Return figure and axes
return fig, ax
# Plot outputs
def plot_outputs(datasetID, basenames, n_images=3, model_labels=None):
# Set up model_labels
if model_labels is None:
model_labels = {basename: basename.split('_')[0] for basename in basenames}
# Get dataset
if datasetID == 'bdello':
dataset = BdelloDataset(crop=(128, 128), scale=4)
elif datasetID == 'retinas':
dataset = RetinaDataset(crop=(512, 512), scale=4)
elif datasetID == 'neurons':
dataset = NeuronsDataset(crop=(512, 512), scale=2)
elif datasetID == 'letters':
dataset = LettersDataset(shape=(128, 128), sigma=0.25)
# Get batch
dataloader = DataLoader(dataset, batch_size=n_images, shuffle=True)
tries = 0
while tries < 10:
x, y = next(iter(dataloader))
if (y.sum(axis=(1, 2)) > 0).sum(axis=0) >=3:
break
in_channels = x.shape[1]
out_channels = 2
# Loop over models and options
zs = {}
for i, basename in enumerate(basenames):
# Extract model options
options = {}
if 'n_layers' in basename:
options['n_layers'] = int(basename.replace('n_layers=', 'xxx').split('xxx')[1].split('_')[0])
if 'n_blocks' in basename:
options['n_blocks'] = int(basename.replace('n_blocks=', 'xxx').split('xxx')[1].split('_')[0])
if 'n_features' in basename:
options['n_features'] = int(basename.replace('n_features=', 'xxx').split('xxx')[1].split('_')[0])
if 'expansion' in basename:
options['expansion'] = int(basename.replace('expansion=', 'xxx').split('xxx')[1].split('_')[0])
# Load model
if 'conv' in basename:
model = ConvolutionalNet(
in_channels=in_channels, out_channels=out_channels, **options
)
elif 'unet' in basename:
model = UNet(
in_channels=in_channels, out_channels=out_channels, **options
)
elif 'resnet' in basename:
model = ResNet(
in_channels=in_channels, out_channels=out_channels, **options
)
elif 'vit' in basename:
model = VisionTransformer(
img_size=128, in_channels=in_channels, out_channels=out_channels, **options
)
elif 'vim' in basename:
model = VisionMamba(
img_size=128, in_channels=in_channels, out_channels=out_channels, **options
)
# Load model
savename = f'{basename}_ffcv=0'
model.load_state_dict(
torch.load(
os.path.join(root, f'{savename}.pth'),
map_location=torch.device('cpu'),
),
strict=False
)
model.eval()
# Split x into 128x128 patches and get predictions
z = np.zeros((x.shape[0], x.shape[2], x.shape[3]))
for i in range(x.shape[2]//128):
for j in range(x.shape[3]//128):
x_patch = x[:, :, i*128:(i+1)*128, j*128:(j+1)*128]
z_patch = model(x_patch).detach().cpu().numpy().argmax(axis=1)
z[:, i*128:(i+1)*128, j*128:(j+1)*128] = z_patch
# Add to zs
zs[model_labels[basename]] = z
# If dataset is neurons, increase the brightness of the images
if datasetID == 'neurons':
x = np.asarray(x)
x -= x.min(axis=(2, 3), keepdims=True)
x /= x.max(axis=(2, 3), keepdims=True)
x = np.clip(5*x, 0, 1)
# Plot images
fig = plt.figure()
plt.ion()
plt.show()
fig, ax = plot_images(Images=x, Targets=y, **zs, transpose=True)
# Return figure and axes
return fig, ax
# Generate plots
if __name__ == "__main__":
### Plot robustness ###
# Initialize lists
blurs = [8, 16, 32]
sigmas = [1, 2, 4]
models = ['conv', 'unet', 'vit', 'vim']
# Loop over models
for modelID in models:
# Set up figure for examples
fig, ax = plt.subplots(len(blurs), len(sigmas), squeeze=False, figsize=(9, 9))
plt.ion()
plt.show()
# Set up figures for stats
fig_stats, ax_stats = plt.subplots(len(blurs), len(sigmas), squeeze=False, figsize=(9, 9))
plt.ion()
plt.show()
# Loop over datasets
for i, blur in enumerate(blurs):
for j, sigma in enumerate(sigmas):
# Get datasetID
datasetID = f'letters_blur={blur}_sigma={sigma}'
# Load dataset
dataset = LettersDataset(shape=(128, 128), sigma=sigma, blur=blur)
# Get basenames
basenames = [f for f in os.listdir(root) if modelID in f]
basenames = [f for f in basenames if datasetID in f]
basenames = [f for f in basenames if f.endswith('ffcv=0.json')]
# Get best model
best_loss = None
best_model = None
for basename in basenames:
with open(os.path.join(root, basename), 'r') as f:
statistics = json.load(f)
if (best_loss is None) or (statistics['min_val_loss'] < best_loss):
best_loss = statistics['min_val_loss']
best_model = '_'.join(basename.split('_')[:-1])
# Get test metrics
acc_avg = 0
sens_avg = 0
spec_avg = 0
auc_avg = 0
for ffid in range(3):
with open(os.path.join(root, f'{best_model}_ffcv={ffid}.json'), 'r') as f:
statistics = json.load(f)
acc_avg += statistics['test_metrics']['accuracy'] / 5
sens_avg += statistics['test_metrics']['sensitivity'] / 5
spec_avg += statistics['test_metrics']['specificity'] / 5
auc_avg += statistics['test_metrics']['auc_score'] / 5
# Plot bar graph of test metrics
ax_stats[i, j].bar(['ACC', 'SENS', 'SPEC', 'AUC'], [acc_avg, sens_avg, spec_avg, auc_avg])
# Reset basename
basename = best_model
# Extract model options
options = {}
if 'n_layers' in basename:
options['n_layers'] = int(basename.replace('n_layers=', 'xxx').split('xxx')[1].split('_')[0])
if 'n_blocks' in basename:
options['n_blocks'] = int(basename.replace('n_blocks=', 'xxx').split('xxx')[1].split('_')[0])
if 'n_features' in basename:
options['n_features'] = int(basename.replace('n_features=', 'xxx').split('xxx')[1].split('_')[0])
if 'expansion' in basename:
options['expansion'] = int(basename.replace('expansion=', 'xxx').split('xxx')[1].split('_')[0])
# Load model
in_channels = 1
out_channels = 2
if 'conv' in basename:
model = ConvolutionalNet(
in_channels=in_channels, out_channels=out_channels, **options
)
elif 'unet' in basename:
model = UNet(
in_channels=in_channels, out_channels=out_channels, **options
)
elif 'resnet' in basename:
model = ResNet(
in_channels=in_channels, out_channels=out_channels, **options
)
elif 'vit' in basename:
model = VisionTransformer(
img_size=128, in_channels=in_channels, out_channels=out_channels, **options
)
elif 'vim' in basename:
model = VisionMamba(
img_size=128, in_channels=in_channels, out_channels=out_channels, **options
)
# Load model
savename = f'{basename}_ffcv=0'
model.load_state_dict(
torch.load(
os.path.join(root, f'{savename}.pth'),
map_location=torch.device('cpu'),
),
strict=False
)
model.eval()
# Get batch
x, y = next(iter(DataLoader(dataset, batch_size=3, shuffle=True)))
# Get predictions
z = model(x).detach().cpu().numpy().argmax(axis=1)
# Plot example
img = np.zeros((128, 128, 3))
img[:, :, 1] = x[0, 0].detach().cpu().numpy() # Green channel for input
img[:, :, 0] = z[0] # Red channel for prediction
# img[:, :, 2] = y[0] # Blue channel for target
ax[i, j].imshow(img)
# Finalize figures
fig.suptitle(f'{modelID.upper()}')
fig_stats.suptitle(f'{modelID.upper()}')
for i in range(len(blurs)):
for j in range(len(sigmas)):
ax_title = f'Blur={blurs[i]} pixels; SNR={1/sigmas[j]:.2f}'
ax[i, j].set_title(ax_title)
ax_stats[i, j].set_title(ax_title)
ax[i, j].axis('off')
ax_stats[i, j].set_ylim([0,1])
fig.tight_layout()
plt.pause(.1)
fig_stats.tight_layout()
plt.pause(.1)
plt.pause(.1)
# Save figures
fig.savefig(os.path.join(figpath, f'robustness_{modelID}_examples.png'), dpi=900)
fig_stats.savefig(os.path.join(figpath, f'robustness_{modelID}_stats.png'), dpi=900)
# Done
print('Done.')
### Plot results ###
# Set up constants
datasets = ['bdello', 'letters', 'neurons', 'retinas']
models = ['conv', 'unet', 'vit', 'vim',]
# Set up basenames for all jobs
basenames = [f[:-5] for f in os.listdir(root) if f.endswith('.json')]
basenames = [f[:-7] for f in basenames if f.endswith('ffcv=0')]
# Set up model labels
model_labels_best = {}
model_labels_all = {}
for basename in basenames:
# Extract model features
options = {}
modelID = basename.split('_')[0]
if 'n_layers' in basename:
options['n_layers'] = int(basename.replace('n_layers=', 'xxx').split('xxx')[1].split('_')[0])
if 'n_blocks' in basename:
options['n_blocks'] = int(basename.replace('n_blocks=', 'xxx').split('xxx')[1].split('_')[0])
if 'n_features' in basename:
options['n_features'] = int(basename.replace('n_features=', 'xxx').split('xxx')[1].split('_')[0])
if 'expansion' in basename:
options['expansion'] = int(basename.replace('expansion=', 'xxx').split('xxx')[1].split('_')[0])
# Set up model labels
if modelID == 'conv':
label_best = 'CNN'
label_all = f"CNN -- {options['n_layers']} Layers"
elif modelID == 'unet':
label_best = 'UNet'
label_all = f"UNet -- {options['n_blocks']} Blocks"
elif modelID == 'vit':
label_best = 'ViT'
label_all = f"ViT -- {options['n_layers']} Layers"
elif modelID == 'vim':
label_best = 'VSSM'
label_all = f"VSSM -- {options['n_layers']} Layers"
# Add to model labels
model_labels_best[basename] = label_best
model_labels_all[basename] = label_all
# Loop over datasets
for datasetID in datasets:
# Loop over models
best_basenames_dataset = []
basenames_dataset_dict = {}
for modelID in models:
# Get model basenames
basenames_dataset = [f for f in basenames if datasetID in f]
basenames_dataset_model = sorted([f for f in basenames_dataset if modelID in f])
basenames_dataset_dict[modelID] = basenames_dataset_model
# Get best model
best_loss = None
best_model = None
for basename in basenames_dataset_model:
# Load statistics
with open(os.path.join(root, f'{basename}_ffcv=0.json'), 'r') as f:
statistics = json.load(f)
# Update best model
if (best_loss is None) or (statistics['min_val_loss'] < best_loss):
best_loss = statistics['min_val_loss']
best_model = basename
# Add best model to list
best_basenames_dataset.append(best_model)
# Plot outputs for best models
fig, ax = plot_outputs(datasetID, best_basenames_dataset, model_labels=model_labels_best)
fig.savefig(os.path.join(figpath, f'{datasetID}_best_outputs.png'), dpi=900)
# Plot training stats for best models
fig, ax = plot_training_stats(best_basenames_dataset, model_labels=model_labels_best)
fig.savefig(os.path.join(figpath, f'{datasetID}_best_training_stats.png'))
# Plot all training stats
fig, ax = plot_training_stats(basenames_dataset_dict, model_labels=model_labels_all)
fig.savefig(os.path.join(figpath, f'{datasetID}_all_training_stats.png'))
# Done
print('Done.')