-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
538 lines (470 loc) · 24.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
"""Main loop for lightning pose app
To run from the command line (inside the conda environment named "lai" here):
(lai) user@machine: lightning run app app.py
"""
import json
from lightning.app import CloudCompute, LightningApp, LightningFlow
import logging
import numpy as np
import os
import pandas as pd
import shutil
import sys
import time
import yaml
from lightning_pose_app import (
COLLECTED_DATA_FILENAME,
LABELED_DATA_DIR,
LABELSTUDIO_DB_DIR,
LIGHTNING_POSE_DIR,
MODELS_DIR,
SELECTED_FRAMES_FILENAME,
)
from lightning_pose_app.bashwork import LitBashWork
from lightning_pose_app.label_studio.component import LitLabelStudio
from lightning_pose_app.ui.extract_frames import ExtractFramesUI
from lightning_pose_app.ui.project import ProjectUI
from lightning_pose_app.ui.streamlit import StreamlitAppLightningPose
from lightning_pose_app.ui.streamlit_video_viewer import StreamlitVideoViewer
from lightning_pose_app.ui.train_infer import TrainUI
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
_logger = logging.getLogger('APP')
# TODO: HIGH PRIORITY
# - `abort` button next to training/inference progress bars so user doesn't have to kill app
# TODO: LOW PRIORITY
# - launch training in parallel (get this working with `extract_frames` standalone app first)
# - update label studio xml and CollectedData.csv when user inputs new keypoint in project ui
class LitPoseApp(LightningFlow):
def __init__(self):
super().__init__()
# -----------------------------
# paths
# -----------------------------
self.data_dir = "/data" # # relative to Pose-app root
# load default config and pass to project manager
config_dir = os.path.join(LIGHTNING_POSE_DIR, "scripts", "configs")
default_config_dict = yaml.safe_load(open(os.path.join(config_dir, "config_default.yaml")))
# -----------------------------
# flows and works
# -----------------------------
# project manager (flow)
self.project_ui = ProjectUI(
data_dir=self.data_dir,
default_config_dict=default_config_dict,
debug=False, # if True, hard-code project details like n_views, keypoint_names, etc.
)
# extract frames tab (flow + work)
self.extract_ui = ExtractFramesUI()
# training tab (flow + work)
self.train_ui = TrainUI()
# fiftyone tab (work)
self.fiftyone = LitBashWork(
cloud_compute=CloudCompute("default"),
)
# streamlit tabs (flow + work)
self.streamlit_frame = StreamlitAppLightningPose(app_type="frame")
self.streamlit_video = StreamlitAppLightningPose(app_type="video")
self.streamlit_video_player = StreamlitVideoViewer()
# tensorboard tab (work)
self.tensorboard = LitBashWork(
cloud_compute=CloudCompute("default"),
)
# label studio (flow + work)
self.label_studio = LitLabelStudio(
database_dir=os.path.join(self.data_dir, LABELSTUDIO_DB_DIR),
)
self.import_demo_count = 0
def import_demo_dataset(self, src_dir_abs, dst_dir_abs):
"""NOTE
This is an ugly solution. Previously this function was called from the app constructor,
which required label studio to be started inside the constructor as well. This led to
issues with ports. Therefore this import needs to happen in the app's run method.
However, this means that various parts of this function will execute several times before
it is finished. Furthermore, this function runs *every* time the app is called.
"""
if self.import_demo_count > 0:
return
proj_dir_abs = dst_dir_abs
project_name = os.path.basename(dst_dir_abs)
# check to see if the demo dataset has already been imported
label_studio_exports = os.path.join(
os.path.dirname(dst_dir_abs), LABELSTUDIO_DB_DIR, "export",
)
projects = {}
if os.path.isdir(label_studio_exports):
files = os.listdir(label_studio_exports)
for f in files:
if f.endswith("info.json"):
try:
json_file = os.path.join(label_studio_exports, f)
d = json.load(open(json_file, "r"))
project_name_curr = d["project"]["title"]
n_labels_curr = d["project"]["task_number"]
projects[project_name_curr] = n_labels_curr
except Exception:
# sometimes there is a json read error, not sure why
continue
if project_name in projects.keys() and projects[project_name] >= 90:
self.import_demo_count += 1
return
_logger.info("Importing demo dataset; this will only take a minute")
# -------------------------------
# copy data
# -------------------------------
# copy full example data directory over
if not os.path.isdir(proj_dir_abs):
shutil.copytree(src_dir_abs, proj_dir_abs)
# copy config file
config_file_dst = os.path.join(proj_dir_abs, f"model_config_{project_name}.yaml")
if not os.path.isfile(config_file_dst):
shutil.copyfile(
os.path.join(
LIGHTNING_POSE_DIR, "scripts", "configs", f"config_{project_name}.yaml"
),
config_file_dst,
)
# make csv file for label studio
csv_file_ls = os.path.join(proj_dir_abs, LABELED_DATA_DIR, SELECTED_FRAMES_FILENAME)
if not os.path.isfile(csv_file_ls):
n_frames = len(os.listdir(os.path.join(proj_dir_abs, LABELED_DATA_DIR)))
idxs_selected = np.arange(1, n_frames - 2) # we've stored mock context frames
n_digits = 2
extension = "png"
frames_to_label = np.sort(np.array(
["img%s.%s" % (str(idx).zfill(n_digits), extension) for idx in idxs_selected]
))
np.savetxt(csv_file_ls, frames_to_label, delimiter=",", fmt="%s")
# make models dir
os.makedirs(os.path.join(proj_dir_abs, MODELS_DIR), exist_ok=True)
# -------------------------------
# remove obstacle keypoints
# -------------------------------
config_dict = yaml.safe_load(open(config_file_dst))
config_dict["data"]["keypoint_names"] = [
"paw1LH_top",
"paw2LF_top",
"paw3RF_top",
"paw4RH_top",
"tailBase_top",
"tailMid_top",
"nose_top",
"paw1LH_bot",
"paw2LF_bot",
"paw3RF_bot",
"paw4RH_bot",
"tailBase_bot",
"tailMid_bot",
"nose_bot",
]
config_dict["data"]["columns_for_singleview_pca"] = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
]
config_dict["data"]["mirrored_column_matches"] = [
[0, 1, 2, 3, 4, 5, 6],
[7, 8, 9, 10, 11, 12, 13],
]
config_dict["losses"]["temporal"]["epsilon"] = 10
yaml.dump(config_dict, open(config_file_dst, "w"))
csv_file = os.path.join(proj_dir_abs, COLLECTED_DATA_FILENAME)
df = pd.read_csv(csv_file, index_col=0, header=[0, 1, 2])
if 'obs_top' in df.columns.get_level_values(1):
df.drop('obs_top', axis=1, level=1, inplace=True)
if 'obsHigh_bot' in df.columns.get_level_values(1):
df.drop('obsHigh_bot', axis=1, level=1, inplace=True)
if 'obsLow_bot' in df.columns.get_level_values(1):
df.drop('obsLow_bot', axis=1, level=1, inplace=True)
df.to_csv(csv_file)
# -------------------------------
# import project to labelstudio
# -------------------------------
# create project flow to help with upload
project_ui_demo = ProjectUI(
data_dir=self.data_dir,
default_config_dict=self.project_ui.default_config_dict,
debug=False, # if True, hard-code project details like n_views, keypoint_names, etc.
)
# update paths
project_ui_demo.run(action="update_paths", project_name=project_name)
# load project defaults
project_ui_demo.run(action="update_project_config")
# make keypoints field
keypoint_names = project_ui_demo.config_dict["data"]["keypoint_names"]
project_ui_demo.run(
action="update_project_config",
new_vals_dict={
"data": {"keypoints": keypoint_names, "num_keypoints": len(keypoint_names)}
},
)
# import to labelstudio
self.label_studio.run(
action="update_paths",
proj_dir=project_ui_demo.proj_dir,
proj_name=project_name,
)
self.label_studio.run(
action="create_labeling_config_xml",
keypoints=project_ui_demo.config_dict["data"]["keypoints"],
)
self.label_studio.run(action="create_new_project")
self.label_studio.run(action="import_existing_annotations")
# -------------------------------
# cleanup - reset labelstudio
# -------------------------------
self.label_studio.proj_dir = None
self.label_studio.proj_name = None
self.label_studio.keypoints = None
for key, val in self.label_studio.filenames.items():
self.label_studio.filenames[key] = ""
self.label_studio.counts["create_new_project"] = 0
self.label_studio.counts["import_existing_annotations"] = 0
del project_ui_demo
self.import_demo_count += 1
def start_tensorboard(self, logdir):
"""run tensorboard"""
cmd = f"tensorboard --logdir {logdir} --host $host --port $port --reload_interval 30"
self.tensorboard.run(cmd, wait_for_exit=False, cwd=os.getcwd())
def start_fiftyone(self):
"""run fiftyone"""
cmd = "fiftyone app launch --address $host --port $port --remote --wait -1"
self.fiftyone.run(cmd, wait_for_exit=False, cwd=os.getcwd())
def update_trained_models_list(self, timer):
self.project_ui.run(action="update_trained_models_list", timer=timer)
if self.project_ui.trained_models:
self.train_ui.trained_models = self.project_ui.trained_models
def run(self):
# for unit testing purposes
if os.environ.get("TESTING_LAI"):
print("⚡ Lightning Pose App! ⚡")
# don't interfere /w train; since all Works use the same filesystem when running locally,
# one Work updating the filesystem which is also used by the trainer can corrupt data, etc.
run_while_training = True
if self.train_ui.run_script_train:
run_while_training = False
# don't interfere w/ inference
run_while_inferring = True
if self.train_ui.run_script_infer:
run_while_inferring = False
# -------------------------------------------------------------
# update project data
# -------------------------------------------------------------
# find previously initialized projects, expose to project UI
self.project_ui.run(action="find_initialized_projects")
# -------------------------------------------------------------
# start background services (run only once)
# -------------------------------------------------------------
self.label_studio.run(action="start_label_studio")
self.start_fiftyone()
if self.project_ui.model_dir is not None:
# find previously trained models for project, expose to training and diagnostics UIs
# timer to force later runs
self.update_trained_models_list(timer=self.train_ui.submit_count_train)
# only launch once we know which project we're working on, and we're not deleting
if self.extract_ui.proj_dir and not self.project_ui.st_delete_project:
self.start_tensorboard(logdir=self.project_ui.model_dir[1:])
self.streamlit_frame.run(action="initialize")
self.streamlit_video.run(action="initialize")
# import mirror-mouse-example dataset
if not os.environ.get("TESTING_LAI"):
self.import_demo_dataset(
src_dir_abs=os.path.join(
os.path.dirname(__file__), LIGHTNING_POSE_DIR, "data", "mirror-mouse-example"),
dst_dir_abs=os.path.join(
os.path.dirname(__file__), self.data_dir[1:], "mirror-mouse-example"),
)
# -------------------------------------------------------------
# update project data (user has clicked button in project UI)
# -------------------------------------------------------------
if self.project_ui.run_script and run_while_training and run_while_inferring:
# update paths now that we know which project we're working with
self.project_ui.run(action="update_paths")
self.extract_ui.proj_dir = self.project_ui.proj_dir
self.train_ui.proj_dir = self.project_ui.proj_dir
self.streamlit_frame.proj_dir = self.project_ui.proj_dir
self.streamlit_video.proj_dir = self.project_ui.proj_dir
self.streamlit_video_player.proj_dir = self.project_ui.proj_dir
self.label_studio.run(
action="update_paths",
proj_dir=self.project_ui.proj_dir,
proj_name=self.project_ui.st_project_name,
)
# create/load/delete project
if self.project_ui.st_create_new_project and self.project_ui.count == 0:
# create project from scratch
# load project defaults then overwrite certain fields with user input from app
self.project_ui.run(action="update_project_config")
# send params to train ui
self.train_ui.config_dict = self.project_ui.config_dict
if self.project_ui.st_keypoints:
# if statement here so that we only run "create_new_project" once we have data
self.label_studio.run(
action="create_labeling_config_xml",
keypoints=self.project_ui.st_keypoints)
self.label_studio.run(action="create_new_project")
# import existing project in another format
if self.project_ui.st_upload_existing_project:
self.project_ui.run(action="upload_existing_project")
self.train_ui.run(action="determine_dataset_type")
self.label_studio.run(action="import_existing_annotations")
self.project_ui.st_upload_existing_project = False
# allow app to advance
self.project_ui.count += 1
self.project_ui.run_script = False
elif self.project_ui.st_delete_project:
self.extract_ui.proj_dir = None # stop tabs from opening
self.train_ui.proj_dir = None
self.streamlit_frame.proj_dir = None
self.streamlit_video.proj_dir = None
self.streamlit_video_player.proj_dir = None
self.label_studio.run(action="delete_project")
self.project_ui.run(action="delete_project")
self.project_ui.run_script = False
else:
# project already created
# figure out if this is a context dataset; won't expose option to user otherwise
self.train_ui.run(action="determine_dataset_type")
if self.project_ui.count == 0:
# load project configuration from config file
self.project_ui.run(action="load_project_defaults")
self.train_ui.config_dict = self.project_ui.config_dict
# update label studio object
self.label_studio.keypoints = self.project_ui.st_keypoints
# count labeled frames
self.project_ui.run(
action="compute_labeled_frame_fraction", timer=self.label_studio.time)
self.train_ui.n_labeled_frames = self.project_ui.n_labeled_frames
self.train_ui.n_total_frames = self.project_ui.n_total_frames
# allow app to advance
self.project_ui.count += 1
self.project_ui.run_script = False
else:
# update project
self.project_ui.run(action="update_project_config")
# send params to train ui
self.train_ui.config_dict = self.project_ui.config_dict
# allow app to advance
self.project_ui.count += 1
self.project_ui.run_script = False
# -------------------------------------------------------------
# extract frames for labeling
# -------------------------------------------------------------
if self.extract_ui.proj_dir and self.extract_ui.run_script_video_random:
self.extract_ui.run(
action="extract_frames",
video_files=self.extract_ui.st_video_files, # add arg for run caching purposes
)
# wait until frame extraction is complete, then update label studio tasks
if self.extract_ui.work_is_done_extract_frames:
self.project_ui.run(action="update_frame_shapes")
# hack; for some reason the app won't advance past the ls run
self.extract_ui.run_script_video_random = False
self.label_studio.run(action="update_tasks", videos=self.extract_ui.st_video_files)
self.extract_ui.run_script_video_random = False
if self.extract_ui.proj_dir and self.extract_ui.run_script_zipped_frames:
self.extract_ui.run(
action="unzip_frames",
video_files=self.extract_ui.st_frame_files, # add arg for run caching purposes
)
# wait until frame extraction is complete, then update label studio tasks
if self.extract_ui.work_is_done_extract_frames:
self.project_ui.run(action="update_frame_shapes")
# hack; for some reason the app won't advance past the ls run
self.extract_ui.run_script_zipped_frames = False
self.label_studio.run(action="update_tasks", videos=self.extract_ui.st_frame_files)
self.extract_ui.run_script_zipped_frames = False
if self.extract_ui.proj_dir and self.extract_ui.run_script_video_model:
self.extract_ui.run(
action="extract_frames_using_model",
video_files=self.extract_ui.st_video_files, # add arg for run caching purposes
)
# wait until frame extraction is complete, then update label studio tasks
if self.extract_ui.work_is_done_extract_frames:
self.project_ui.run(action="update_frame_shapes")
# hack; for some reason the app won't advance past the ls run
self.extract_ui.run_script_video_model = False
self.label_studio.run(action="update_tasks", videos=self.extract_ui.st_video_files)
self.extract_ui.run_script_video_model = False
if self.extract_ui.proj_dir and self.extract_ui.run_script_check_labels:
self.extract_ui.run(
action="save_annotated_frames",
selected_body_parts=self.extract_ui.selected_body_parts
)
self.extract_ui.run_script_check_labels = False
# -------------------------------------------------------------
# periodically check labeling task and export new labels
# -------------------------------------------------------------
if self.project_ui.count > 0 and run_while_training and run_while_inferring:
# with large datasets, the check_labeling_task_and_export can take >15 s
if self.project_ui.n_labeled_frames is None or self.project_ui.n_labeled_frames < 1000:
if self.project_ui.n_labeled_frames is None or self.project_ui.n_total_frames < 500:
t_elapsed = 15 # seconds
else:
t_elapsed = 30
t_elapsed_list = ",".join([str(v) for v in range(0, 60, t_elapsed)])
if self.schedule(f"* * * * * {t_elapsed_list}"):
# only true for a single flow execution every n seconds; capture event in state var
self.label_studio.check_labels = True
self.label_studio.time = time.time()
else: # assume 5k frames/minute for label studio updates (conservative, ~15k/minute in reality)
t_elapsed = int(np.ceil(self.project_ui.n_total_frames / 5000))
if self.schedule(f"*/{t_elapsed} * * * *"):
# only true for a single flow execution every n seconds; capture event in state var
self.label_studio.check_labels = True
self.label_studio.time = time.time()
if self.label_studio.check_labels:
self.label_studio.run(
action="check_labeling_task_and_export", timer=self.label_studio.time)
self.project_ui.run(
action="compute_labeled_frame_fraction", timer=self.label_studio.time)
self.train_ui.n_labeled_frames = self.project_ui.n_labeled_frames
self.train_ui.n_total_frames = self.project_ui.n_total_frames
self.label_studio.check_labels = False
# -------------------------------------------------------------
# train models on ui button press
# -------------------------------------------------------------
if self.train_ui.run_script_train and run_while_inferring:
self.train_ui.run(action="train", config_filename=self.project_ui.config_name)
self.project_ui.update_models = True
self.train_ui.run_script_train = False
# set the new outputs for UIs
if self.project_ui.update_models:
self.project_ui.update_models = False
self.update_trained_models_list(timer=self.train_ui.submit_count_train)
# -------------------------------------------------------------
# run inference on ui button press (single model, multiple vids)
# -------------------------------------------------------------
if self.train_ui.run_script_infer and run_while_training:
self.train_ui.run(
action="run_inference",
video_files=self.train_ui.st_inference_videos, # add arg for run caching purposes
)
self.train_ui.run_script_infer = False
def configure_layout(self):
# init tabs
project_tab = {"name": "Manage Project", "content": self.project_ui}
extract_tab = {"name": "Extract Frames", "content": self.extract_ui}
annotate_tab = {"name": "Label Frames", "content": self.label_studio.label_studio}
# training tabs
train_tab = {"name": "Train/Infer", "content": self.train_ui}
train_status_tab = {"name": "Train Status", "content": self.tensorboard}
# diagnostics tabs
st_frame_tab = {"name": "Image Diagnostics", "content": self.streamlit_frame.work}
st_video_tab = {"name": "Video Diagnostics", "content": self.streamlit_video.work}
st_video_player_tab = {"name": "Video Player", "content": self.streamlit_video_player}
fo_tab = {"name": "Image Viewer", "content": self.fiftyone}
if self.extract_ui.proj_dir and not self.project_ui.st_delete_project:
return [
project_tab,
extract_tab,
annotate_tab,
train_tab,
train_status_tab,
st_frame_tab,
fo_tab,
st_video_tab,
st_video_player_tab,
]
else:
return [
project_tab,
]
app = LightningApp(LitPoseApp())