-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEligibilityScreening_FC.Rmd
523 lines (400 loc) · 18.5 KB
/
EligibilityScreening_FC.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
---
title: "Eligibility Screening: 2-Alternative-Forced-Choice"
author: "Jutta Pieper"
date: "28.04.2022"
output:
html_document:
toc: true
number_sections: true
toc_float:
collapsed: true
toc_depth: 2
keep_md: yes
bibliography: references/bibliography.bibtex
csl: references/apa.csl
link-citations: true
---
```{r setup, echo = FALSE, include=TRUE, warning = FALSE, message = FALSE}
library(tidyverse)
library(DT)
options(DT.options = list(dom = 'Blfrtip', pageLength = 5, searching = FALSE, buttons = c( 'csv', 'excel', 'pdf')))
library(ggpubr)
library(knitr)
library(kableExtra)
options(knitr.kable.NA = "")
kable <- function(data, ...) {
knitr::kable(data, digits=3, ...) %>% kable_styling(bootstrap_options = "striped", full_width = F, position = "center")
}
knit_print.data.frame <- function(x, ...) {
res <- paste(c("", "", kable(x)), collapse = "\n")
asis_output(res)
}
registerS3method("knit_print", "data.frame", knit_print.data.frame)
```
Read in questionnaire:
```{r read_merge_data}
filler_items = read.csv(
"./judgments/all/ForcedChoice_filler.csv", fileEncoding = "UTF-8")
test_items = read.csv("./judgments/all/ForcedChoice_test.csv", fileEncoding = "UTF-8") %>%
mutate(ITEM_FUNCTION = "test")
questionnaire = bind_rows(filler_items, test_items) %>%
mutate_at(.vars = c("ITEM_FUNCTION", "workerId"), .funs = as_factor)
```
```{r init_worker_profile, echo = FALSE}
## Store all gathered information in data.frame for worker overview and final decision
worker_profile = data.frame(
workerId = character(),
criterion = character(),
score = numeric(),
accept = logical())
```
# Progress (incomplete submissions)
We require that at least 90\% of the questionnaire has been completed.
(Note: we assume that there are no missing trials due to data loss / technical errors).
```{r available_trials}
available_trials = questionnaire %>%
group_by(workerId) %>%
summarise(trials = n(),
trials_prop = n()/length(unique(questionnaire$trial_index))) %>%
mutate(accept = ifelse(trials_prop < 0.9, FALSE, TRUE)) %>%
arrange(trials_prop)
```
Let's check whether there are participants that left the questionnaire prematurely:
```{r}
available_trials %>% filter(trials_prop < 1) %>% kable()
```
```{r wp_available, echo = FALSE}
worker_profile = rbind(worker_profile,
available_trials %>%
select(workerId, trials_prop, accept) %>%
rename(score = trials_prop) %>%
mutate(criterion = "progress"))
```
Remove incomplete data from questionnaire:
```{r}
questionnaire = questionnaire %>%
filter(!(workerId %in% (
available_trials %>% filter(accept == FALSE) %>% pull(workerId)
)))
```
# Latency-based identification
## Spammers
We will reject workers with *mean*(RT) < 3000 ms (as simple spammers) and those with *median*(RT) < 3000 ms (as clever spammers):
```{r}
simple_spammer = questionnaire %>%
group_by(workerId) %>%
summarise(score = mean(rt)) %>%
mutate(criterion = "meanRT",
accept = ifelse(score < 3000, FALSE, TRUE))
```
Are there any simple spammers?
```{r}
simple_spammer %>% filter(accept == FALSE) %>% kable()
```
```{r}
clever_spammer = questionnaire %>%
group_by(workerId) %>%
summarise(score = median(rt)) %>%
mutate(criterion = "medianRT",
accept = ifelse(score < 3000, FALSE, TRUE))
```
Are there any clever spammers?
```{r}
clever_spammer %>% filter(accept == FALSE) %>% kable()
```
```{r echo = FALSE}
worker_profile = rbind(worker_profile, simple_spammer)
worker_profile = rbind(worker_profile, clever_spammer)
```
## RT distributions
Participants and different (groups of) items presumably exhibit different RT distributions:
```{r rt_density_fc}
rt_density_worker = questionnaire %>%
ggplot(aes(x=log(rt), group = workerId)) +
geom_density(alpha=.3, fill = "#DFF1FF")
rt_density_item_funs = questionnaire %>%
ggplot(aes(x = log(rt), fill=ITEM_FUNCTION)) +
geom_density(alpha=.3) +
scale_fill_brewer(palette = "Greys")
```
```{r rt_density_fc_plot, echo = FALSE, fig.width = 10, fig.height=5, fig.cap="Figure 1 in @Pieper_et_al_2022",fig.topcaption=TRUE}
ggpubr::annotate_figure(
ggpubr::ggarrange(
rt_density_item_funs +
theme(legend.position = "None") +
ggtitle("per item function") +
theme_bw(base_size = 16),
rt_density_worker +
theme(legend.position = "bottom", legend.title = element_blank()) +
ggtitle("per participant") +
theme_bw(base_size = 16),
nrow = 1, common.legend = TRUE, legend = "bottom")) +
theme_minimal(base_size = 20)
```
The more diverse the distribution the stronger is the superiority of ReMFOD (see next chapter) above generic cutoff points for outlier detection.
## Underperforming
**Recursive multi-factorial outlier detection (ReMFOD , @Pieper_et_al_2022)**
```{r}
source("./R Sources/ReMFOD.R")
```
ReMFOD (see [source code](./R Sources/ReMFOD.R)) aims at identifying individual trials as genuine intermissions and rushes. In doing so, ReMFOD accounts for different RT distributions of different participants and item functions, as well as swamping and masking effects. Underpinned by these suspicious individual trials, underperforming participants can be determined by means of proportion of trials not responded to wholeheartedly. We propose to discard participants who have responded genuinely to less than 90~\% of trials because they supposedly did not meet the task with the necessary seriousness.
To account for different RT distributions, ReMFOD compares the RT of each trial to a lower and an upper cutoff point, which each consider two cutoff criteria, respectively: The first criterion is computed with respect to the group of trials with the same *item function* (i.e. attention trials only, control trials only, etc.) regardless of the participant responding, the second one is computed with respect to all trials of the corresponding participant (regardless of the item function). Only if an RT surmounts or falls below *both* criteria, it will be designated as a *genuine intermission*
or as a *genuine rush*.[^1]
[^1]: @Miller_1991 proposes the values of 3 (very conservative), 2.5 (moderately conservative) or even 2 (poorly
conservative). @Haeussler_Juzek_2016 suggest using an asymmetric criterion (using standard deviations) of -1.5 for the lower and +4 for the upper cutoff point.
\begin{align} \label{eq:cutoff_outlier_rt}
\textit{cutoff_}&\textit{intermission} = \max \left\{ \right.\\
&\left. \text{median}(\textit{RTs:participant}) + 2.5 \times \text{mad}(\textit{RTs:participant}), \right.\nonumber\\
&\left. \text{median}(\textit{RTs:item_function}) + 2.5 \times \text{mad}(\textit{RTs:item_function})\right.\nonumber\}
\end{align}
\begin{align} \label{eq:cutoff_guesses_rt}
\textit{cutoff_}&\textit{rush} = \min \left\{ \right.\\
&\left. \text{median}(\textit{RTs:participant}) - 1.5 \times \text{mad}(\textit{RTs:participant}), \right.\nonumber\\
&\left. \text{median}(\textit{RTs:item_function}) - 1.5 \times \text{mad}(\textit{RTs:item_function})\right.\nonumber\}
\end{align}
To account for swamping and masking effects (see @Ben-Gal_2005),
the process described above will be repeated on a reduced data set (i.e. excluding already detected outliers) until no more outliers can be found. Therefore, in each iteration step, the cutoff points must be computed afresh.
### Overview plot for item functions
Different outlier types, computed with respect to different groups, are marked by different shapes: Box-shaped trials are the only RTs we consider as genuine intermissions or rushes. Note that the shapes may overlap as these outliers have been computed by various procedures differing in the groups they included to identify outliers.
```{r ls_remfod_plot_item_function, fig.width = 10, fig.height=5, fig.cap="Upper plot of Figure 2 in @Pieper_et_al_2022",fig.topcaption=TRUE}
## compute different outlier types based on the whole questionnaire and plot these
remfod_plot = questionnaire %>% outlier_plots_remfod()
item_plot = remfod_plot # we are going to reuse remfod_plot for workers
## remove data we are currently not interested in from the plot
item_plot$data = item_plot$data %>%
filter(!ITEM_FUNCTION %in% c("calibration", "filler"))
## structure plot as you like
item_plot + facet_wrap(~ ITEM_FUNCTION, nrow = 1)
```
### Performance of participants
We expect that 90 % of the trials are answered without genuine intermission or rushes, i.e. that 90 % of the RTs are *valid*
```{r genuine_outliers_summ, message = FALSE, warning = FALSE}
rt_outlier_count = remfod(questionnaire) %>%
group_by(workerId, direction) %>% tally() %>%
spread(key = "direction", value = "n") %>%
rename( none = "<NA>") %>%
mutate_if(is.numeric, replace_na, 0) %>%
mutate(trials_total = sum(long, short, none),
prop_long = long/trials_total,
prop_short = short/trials_total,
prop_out = (short+long)/trials_total,
prop_valid = none/trials_total,
accept = ifelse(prop_valid < 0.9, FALSE, TRUE)) %>%
arrange(prop_valid) %>%
mutate_if(is.numeric, round, 4)
```
```{r genuine_outliers_summ_table, echo = FALSE, message = FALSE, warning = FALSE, echo = FALSE}
rt_outlier_count %>% datatable(rownames = FALSE, extensions = 'Buttons')
```
```{r worker_profile_remfod, echo = FALSE}
worker_profile = rbind(worker_profile,
rt_outlier_count %>%
select(workerId, prop_valid, accept) %>%
rename(score = prop_valid) %>%
mutate(criterion = "validRTs"))
```
#### Plots of individual participants
Some underperforming participants
```{r FC_underperforming, echo = FALSE}
worker_plot = remfod_plot ## computed different outlier types based on the whole questionnaire and plot these
## remove data we are currently not interested in from the plot
worker_plot$data = worker_plot$data %>%
filter(workerId %in% (rt_outlier_count %>% filter(accept == FALSE) %>% pull(workerId)))
## structure plot as you like
no_pages = min(9,floor((rt_outlier_count %>% filter(accept == FALSE) %>% nrow()) / 3)) # prevent bug facet_wrap_paginate ~ show only full pages
for(i in c(1:no_pages)){
plot(worker_plot + ggforce::facet_wrap_paginate(~ workerId, nrow = 1, ncol = 3, page = i))
}
```
```{r FC_exemplative, eval = all(c(233,252,269) %in% unique(remfod_plot$data$workerId)), echo = FALSE, results='asis',fig.cap="Lower plot of Figure 2 in @Pieper_et_al_2022",fig.topcaption=TRUE}
cat("***\nFurther exemplative workers\n\n")
worker_plot = remfod_plot ## computed different outlier types based on the whole questionnaire and plot these
## remove data we are currently not interested in from the plot
worker_plot$data = worker_plot$data %>%
filter(workerId %in% c(233,252,269))
## structure plot as you like
worker_plot + facet_wrap(~ workerId, nrow = 1, ncol = 3)
```
# Item-based identification
```{r attention_trials}
control_trials = questionnaire %>%
filter(ITEM_FUNCTION == "control") %>%
droplevels()
attention_trials = questionnaire %>%
filter(ITEM_FUNCTION == "attention") %>%
droplevels()
```
Each control group should provide chances of less than 5% to pass controls by guessing.
## Guessing probabilities
```{r}
source("./R Sources/GuessingProbs.R")
```
To compute the probability (by standard binomial expansions) of (*exactly!*) k correct answers out of N trials, where
- ***k*** amount of trials answered correctly
- ***N*** mount of total trials
- ***p*** the probability of a correct response
- ***q*** the probability of an incorrect response
- ***p == q***, i.e. there are only two choices
we can use the simplified formula (see @Frederick_Speed_2007), implemented by the function `k_out_of_N`:
\begin{align}
\frac{N!}{k!(N - k)!}p^{N}
\label{eq:probs_binomial_2choices}
\end{align}
To compute the probability (by standard binomial expansions) of k *or fewer* correct answers out of N trials, we can use the function `k_out_of_N_cumulative`, which returns the sum of all the probabilities from 0 to k (see [source code](./R Sources/GuessingProbs.R)).
## Criterion selection
Each control group should provide chances of less than 5% to pass controls by guessing.
Let's look at the chances to answer **at least** k out of N items correct for different ks and Ns:
```{r eval = FALSE}
k_out_of_N_matrix_cumulative(Ns = seq(4,16,2), ks = c(2:12))
```
```{r echo = FALSE}
k_out_of_N_matrix_cumulative(Ns = seq(4,16,2), ks = c(2:12)) %>%
rename("N\\k" = N) %>% kable(caption = "Table 2 in @Pieper_et_al_2022") %>%
column_spec(1,bold=T)
```
To determine the amount of trials that participants are required to respond to correctly, we only need the number of attention trials employed in this study. Our rule of thumb is that chances to pass this test by chance (i.e. guessing) must not succeed 5%. We use the function `find_k_min(N)` which return the minimal requirement of all valid options, or the best possible requirement.
## Evaluation groups
There are different ways to proceed: we could evaluate attention and control items as one group, evaluate them separately, and even evaluate related and unrelated control items separately.
The best choice may depend on the exact nature of your trials.
We are going to compute evaluations based on all groups mentioned.
To facilitate computation, we combine the different groups (named by `ITEM_FUNCTION`) into a single frame -- whereby adapting `ITEM_FUNCTION` in some cases:
```{r}
eval_trials = rbind(control_trials, attention_trials) %>%
# attenion or control items evaluated as one group
mutate(ITEM_FUNCTION = "attention|control") %>%
bind_rows(attention_trials) %>%
bind_rows(control_trials) %>%
# separate evaluation of related and unrelated control trials
bind_rows(control_trials %>%
mutate(ITEM_FUNCTION = paste(ITEM_FUNCTION, ITEM_SUBGROUP, sep="_"))
)
```
Find number of trials in each group (per questionnaire):
```{r message = FALSE}
Ns = eval_trials %>%
select(ITEM_FUNCTION, itemId) %>%
distinct() %>%
group_by(ITEM_FUNCTION) %>% summarize(N = n())
```
Find required k to each group:
```{r}
eval_criteria = Ns %>% rowwise() %>%
mutate(k = find_k_min(N), prop_k = k/N)
```
```{r echo = FALSE, fig.align='center'}
eval_criteria %>% kable()
```
count correct responses and compare to number of required correct responses
```{r eval_item_based, warning = FALSE, message= FALSE}
item_based_eval = eval_trials %>%
mutate(ANSWER_correct = ifelse(grepl("\\*", ANSWER), "incorrect", "correct")) %>%
group_by(workerId, ITEM_FUNCTION, ANSWER_correct) %>%
tally() %>% ungroup(workerId) %>%
spread(key = ANSWER_correct, value = n) %>%
mutate_if(is.numeric, replace_na,0) %>%
## we use proportions in order to deal with potentially missing data
mutate(prop_correct = correct / (correct+incorrect)) %>%
merge(eval_criteria) %>%
mutate(accept = ifelse(prop_correct < prop_k, FALSE, TRUE)) %>%
arrange(prop_correct)
```
```{r echo = FALSE}
item_based_eval %>%
mutate_if(is.numeric, round, digits = 3) %>%
datatable(rownames = FALSE, extensions = 'Buttons')
```
```{r worker_profile_item_based, echo = FALSE}
worker_profile = rbind(worker_profile,
item_based_eval %>%
select(workerId, prop_correct, accept, ITEM_FUNCTION) %>%
rename(score = prop_correct, criterion = ITEM_FUNCTION)
)
```
# Rejected participants
Let's have a look at the criteria we used to evaluate participants:
```{r}
unique(worker_profile$criterion)
```
If we applied all of those criteria, and reject all participants who failed on any of them, how many participants would we be left with, i.e. accept?
```{r}
worker_acceptance = worker_profile %>%
select(-score) %>%
group_by(workerId) %>%
summarise(accept = !any(!accept))
table(worker_acceptance$accept)
```
## Rejection reasons
For convenience, we have (covertly) stored all information gathered in a table named `worker_profile`.
Let's have a look at how many participants are rejected the individual criteria:
```{r}
## individual
rejection_reasons = worker_profile %>%
group_by(criterion, accept) %>%
tally() %>%
spread(key = accept, value = n) %>%
rename(acccept = 'TRUE', reject = 'FALSE')
```
```{r echo=FALSE, fig.align = 'center'}
kable(rejection_reasons)
```
```{r}
## Combined Rejection Reasons
rejection_reasons_combined = worker_profile %>%
filter(accept == FALSE) %>%
group_by(workerId) %>%
arrange(criterion) %>%
summarise(criteria = paste(criterion, collapse = " + ")) %>%
group_by(criteria) %>% tally() %>%
arrange(criteria)
```
```{r echo=FALSE, fig.align = 'center'}
kable(rejection_reasons_combined)
```
## Final decision
If we do not want to apply certain criteria, we can delete them now from the worker profile:
As we find that enough participants passed attention trials (although it was required that all trials are responded to correctly), we do remove the group `attention|control` as it is hence not needed (and for illustration purposes):
```{r}
worker_profile = worker_profile %>%
## restrict to attention and control as groups
filter(!grepl("\\|",criterion) & !(grepl("related",criterion)))
```
## Participants overview table
we might also check on individual participants:
```{r}
worker_profile %>%
mutate(score = ifelse(score > 1,
score/1000, # seconds
score*100) # percent
) %>%
mutate(score = format(round(score, 2), nsmall = 2)) %>%
select(-accept) %>%
spread(key = criterion, value = score) %>%
merge(worker_acceptance) %>% relocate(accept) %>%
mutate(accept = ifelse(accept,"yes","no")) %>%
datatable(rownames = FALSE, extensions = 'Buttons', options = list(
columnDefs = list(list(className = 'dt-right',
targets = 1:(1+length(unique(worker_profile$criterion)))))
))
```
## Remove ineligible participants
Rejected Workers:
```{r}
reject = worker_profile %>%
filter(accept == FALSE) %>%
pull(workerId) %>% unique() %>% sort()
length(reject)
reject
```
Remove their data from fillers:
```{r}
filler_items = filler_items %>%
filter(! workerId %in% reject)
write.csv(filler_items, "./judgments/eligible/ForcedChoice_filler.csv", fileEncoding = "UTF-8", row.names = FALSE)
```
Remove their data from test items:
```{r}
test_items = test_items %>%
filter(! workerId %in% reject)
write.csv(test_items, "./judgments/eligible/ForcedChoice_test.csv", fileEncoding = "UTF-8", row.names = FALSE)
```
# References