-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathcheck_gt_box.py
59 lines (51 loc) · 2.17 KB
/
check_gt_box.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
This code is used to check the data size distribution in the dataset.
"""
import xml.etree.ElementTree as ET
from math import sqrt as sqrt
import cv2
import matplotlib.pyplot as plt
# sets = [("./data/wider_face_add_lm_10_10", "trainval")]
sets = [("./data/wider_face_add_lm_10_10", "test")]
classes = ['face']
if __name__ == '__main__':
width = []
height = []
for image_set, set in sets:
image_ids = open('{}/ImageSets/Main/{}.txt'.format(image_set, set)).read().strip().split()
for image_id in image_ids:
img_path = '{}/JPEGImages/{}.jpg'.format(image_set, image_id)
label_file = open('{}/Annotations/{}.xml'.format(image_set, image_id))
tree = ET.parse(label_file)
root = tree.getroot()
size = root.find('size')
img_w = int(size.find('width').text)
img_h = int(size.find('height').text)
img = cv2.imread(img_path)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 2:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
xmin = int(xmlbox.find('xmin').text)
ymin = int(xmlbox.find('ymin').text)
xmax = int(xmlbox.find('xmax').text)
ymax = int(xmlbox.find('ymax').text)
w = xmax - xmin
h = ymax - ymin
# img = cv2.rectangle(img, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 255, 0), 8)
w_change = (w / img_w) * 320
h_change = (h / img_h) * 240
s = w_change * h_change
if w_change / h_change > 6:
print("{}/{}/{}/{}".format(xmin, xmax, ymin, ymax))
width.append(sqrt(s))
height.append(w_change / h_change)
print(img_path)
# img = cv2.resize(img, (608, 608))
# cv2.imwrite('{}_{}'.format(image_set.split('/')[-1], set), img)
# cv2.waitKey()
plt.plot(width, height, 'ro')
plt.show()